Learn more about Search Results 調査 - Page 152

このAI論文は、自律走行車のデータセットを対象とし、コンピュータビジョンモデルのトレーニングの匿名化の影響を研究しています

画像匿名化とは、プライバシー保護のために画像から機密情報を変更または削除することです。プライバシー規制に準拠するために重要ですが、匿名化はしばしばデータ品質を低下させ、コンピュータビジョンの開発を妨げます。データ劣化、プライバシーとユーティリティのバランス、効率的なアルゴリズムの作成、モラルと法的問題の調整など、いくつかの課題が存在します。プライバシーを確保しながらコンピュータビジョンの研究とアプリケーションを改善するために、適切な妥協点を見つける必要があります。 画像の匿名化に関する以前のアプローチには、ぼかし、マスキング、暗号化、クラスタリングなどの従来の方法が含まれています。最近の研究では、生成モデルを使用してアイデンティティを置き換えることにより、現実的な匿名化に焦点が当てられています。しかし、多くの方法には匿名性の正式な保証がなく、画像の他の手がかりでアイデンティティが明らかになることがあります。さまざまな影響を持つタスクによって、コンピュータビジョンモデルに与える影響を探究した限られた研究が行われています。公開された匿名化されたデータセットはまれです。 最近の研究では、ノルウェー科学技術大学の研究者が、自律型車両の文脈での重要なコンピュータビジョンタスク、特にインスタンスセグメンテーションおよび人物姿勢推定に注目しました。彼らはDeepPrivacy2に実装されたフルボディと顔の匿名化モデルの性能を評価し、現実的な匿名化アプローチと従来の方法の効果を比較することを目的としました。 記事で評価された匿名化の影響を評価するために提案された手順は次のとおりです。 一般的なコンピュータビジョンデータセットの匿名化。 匿名化されたデータを使用してさまざまなモデルをトレーニングする。 元の検証データセットでモデルを評価する。 著者らは、ぼかし、マスクアウト、現実的な匿名化の3つのフルボディと顔の匿名化テクニックを提案しています。インスタンスセグメンテーション注釈に基づいて匿名化領域を定義します。従来の方法にはマスキングアウトとガウスぼかしがあり、現実的な匿名化にはDeepPrivacy2からの事前トレーニング済みモデルが使用されます。著者らはまた、ヒストグラム均等化と潜在最適化を介してフルボディ合成のグローバルコンテキストの問題にも取り組んでいます。 著者らは、COCOポーズ推定、Cityscapesインスタンスセグメンテーション、BDD100Kインスタンスセグメンテーションの3つのデータセットを使用して匿名化されたデータでトレーニングされたモデルを評価する実験を実施しました。顔の匿名化技術はCityscapesとBDD100Kデータセットにおいてほとんど性能に差がありませんでした。しかし、COCOポーズ推定において、マスクアウトとぼかしの両方が人体との相関関係により性能の大幅な低下を引き起こしました。フルボディの匿名化は、従来の方法でも現実的な方法でも、元のデータセットと比較して性能が低下しました。現実的な匿名化はより優れていましたが、キーポイント検出のエラー、合成の制限、グローバルコンテキストの不一致により、結果が低下しました。著者らはまた、モデルサイズの影響を探究し、COCOデータセットの顔の匿名化において、大きなモデルほど性能が低下することがわかりました。フルボディの匿名化においては、標準的および多変量切り捨て法の両方が性能の向上につながりました。 結論として、この研究は、自律型車両のデータセットを使用してコンピュータビジョンモデルをトレーニングする際に匿名化が及ぼす影響を調査しました。顔の匿名化はインスタンスセグメンテーションにほとんど影響を与えず、フルボディの匿名化は性能を大幅に低下させました。現実的な匿名化は従来の方法よりも優れていましたが、本物のデータの完全な代替品ではありません。モデルのパフォーマンスを損なわずにプライバシーを保護することが重要であることが示されました。この研究は注釈に依存しており、モデルアーキテクチャに制限があるため、匿名化技術を改善し、合成の制限に対処するためのさらなる研究が求められています。自律型車両での人物の合成における課題も指摘されました。 論文をチェックしてください。最新のAI研究ニュース、クールなAIプロジェクトなどを共有する、25k以上のML SubReddit、Discordチャンネル、およびメールニュースレターに参加することをお忘れなく。上記の記事に関する質問や、何か見落としていることがある場合は、[email protected]までメールでお問い合わせください。

Btech卒業後に何をすべきですか?

Btechの後に何をすべきですか?このよくある質問は、最終学年や最近卒業した学生にとって悩みの種です。多くの人々が従来のキャリアパスを選ぶ一方、一部の人々は新しい分野でのキャリアを研究し探求することを決めます。より多くの選択肢を探索し、スキル開発に重点を置き、継続的な学習、進化する技術について常に最新情報を得ることにより、個人は速いペースのBtechの後の旅で成功することができます。この記事では、Btechの後の最良のキャリアオプションについて説明しています。 Btech卒業生の従来のキャリアパス エンジニアの仕事 ソフトウェアエンジニア/開発者: コンピューターサイエンスのBTechを持つソフトウェアエンジニアは、オンラインやモバイルアプリ、データベース管理、ソフトウェアアーキテクチャの開発に参加します。 ハードウェアエンジニア: ハードウェアエンジニアは、コンピューターハードウェアコンポーネントを作成、開発、テストし、最適な動作を確保します。 機械エンジニア: 製品設計、ロボット、産業機械など多様な産業で機械システムを開発、分析、構築します。 電気エンジニア: 電力発電、エレクトロニクス、通信、再生可能エネルギーシステムを計画、開発、維持します。 土木エンジニア: 建設、構造の安全性、環境持続性を維持しながら、インフラプロジェクトの計画、設計、構築、維持を行います。 宇宙航空エンジニア: 航空機、宇宙船、関連技術の設計、開発、テストの責任を担います。 化学エンジニア: 石油化学、医薬品、環境工学、材料科学など、幅広い産業でプロセスを作成、管理します。 環境エンジニア: 環境保護、持続可能性、廃棄物管理のソリューションを提供し、規制に適合します。 大学院研究と研究 MTechまたはME: BTech卒業生は、MTechまたはMEなどの大学院課程を追求することができます。これらには研究の可能性、高度なコースワーク、エンジニアリングの専門分野が含まれます。 MS: BTech卒業生は、研究、コースワーク、協力、論文の達成に焦点を当てた工学のMaster…

DeepMindのロボキャットに会ってください:複数のロボットを操作するために設計された新しいAIモデル

ロボットは急速にメインストリーム文化に入りつつありますが、彼らは通常、彼らのプログラミングのために彼らの能力が制限されています。 最近のAIの進歩をロボットの設計に取り入れることの潜在的な利点にもかかわらず、一般的な目的のロボットを開発するための進展は、現実のトレーニングデータを取得するために必要な時間のために遅れています。 多くのタスクを一度に学習し、ヘルパーロボットの実用的な能力に言語モデルの理解を統合する能力を持つロボットの開発は、広範な研究の対象となっています。 DeepMindのRoboCatは、複数のタイプの実際のロボットでさまざまなタスクを解決し適応する最初のエージェントです。 調査結果によると、RoboCatは他の最先端のモデルよりもはるかに速く学習します。 多岐にわたるデータセットから学習するため、100回のデモンストレーションで新しいスキルを習得できます。 この能力は、多目的ロボットを開発するために重要であり、人間の監視されたトレーニング要件を減らすことにより、ロボット工学の研究を加速します。 彼らのマルチモーダルモデルGato(スペイン語で「猫」)は、RoboCatの基盤となっています。仮想世界と現実世界の両方で言葉、視覚、行動を処理できます。 彼らの作品では、何百ものロボットアームがさまざまな仕事をしているビジュアルと動作のデータを含む大規模なトレーニングデータセットとGatoの構造を融合させました。 この初期のトレーニングフェーズの後、チームはRoboCatを新しい活動の「自己改善」トレーニングサイクルに入れました。 各新しい活動は、以下の5つの段階で学習されました。 新しいタスクまたはロボットを人間が制御するロボットアームで100から1000の例を収集する。 新しいタスク/アームのためにRoboCatを微調整して、専門的な能力を持つスピンオフエージェントを生成する。 子のエージェントは、新しいタスク/アームに対して練習を10,000回繰り返し、トレーニングデータプールに追加する。 サンプルデータをユーザーの作成物およびデモンストレーションデータと混合して、RoboCatの現在のデータセットに統合する。 更新されたデータセットを使用してRoboCatを再トレーニングする。 RoboCatの最新バージョンは、数百万の軌跡を含むデータセットに基づいています。実際のおよびシミュレートされたロボットアームからのビジョンベースのデータ、および多数のロボットアームを使用して収集されたジョブを描くデータが含まれます。 RoboCatはわずか数時間で複数のロボットアームを使用するようにトレーニングされました。 彼は、二本爪のグリッパーを持つアームで教えられたにもかかわらず、より複雑な三本指のグリッパーを持つアームを使うことを学びました。 RoboCatは、1000人の人間が制御するデモンストレーションを目撃した後、歯車を86%の確率で拾うことができるようになりました。 同じ程度のデモにより、フルーツボウルから正しい果物を選ぶなど、精度と知識の両方が必要なタスクを実行する方法を学びました。 RoboCatのトレーニングは自律的に継続されます。 彼が学ぶほど、彼は学ぶ能力を向上させます。 チームは、各タスクの500のデモから学んだ後、RoboCatの最初のバージョンは、これまで見たことのない活動を実行するために36%しか効果的ではありませんでした。…

メリーランド大学カレッジパーク校の新しいAI研究では、人間の目の反射から3Dシーンを再構成することができるAIシステムが開発されました

人間の目は素晴らしい器官であり、視覚を可能にし、重要な環境データを保管することができます。通常、目は2つのレンズとして使用され、光をその網膜を構成する感光細胞に向けて誘導します。しかし、他人の目を見ると、角膜から反射された光も見ることができます。カメラを使用して他人の目を写真に撮ると、イメージングシステム内の一対のミラーに自分の目を変えます。観察者の網膜に届く光と彼らの目から反射する光は同じ源から来るため、彼らのカメラは観察している環境に関する詳細を含む写真を提供するはずです。 以前の実験では、2つの目の画像が、観察者が見ている世界の全景表現を回復させました。リライト、焦点オブジェクトの推定、グリップ位置の検出、個人認識などのアプリケーションは、後続の調査でさらに研究されています。現在の3Dビジョンとグラフィックスの開発により、単一の全景環境マップを再構築するだけでなく、観察者の現実を3次元で復元できるかどうか熟考しています。頭が自然に動くと、目が複数のビューから情報をキャプチャし、反映することを知っています。 メリーランド大学の研究者たちは、過去の画期的な業績と最新のニューラルレンダリングの最新の進歩を融合させた、観察者の環境の3D再構築のための全く新しい技術を提供しています。彼らの方法は、静止したカメラを使用し、目の画像からマルチビューの手掛かりを抽出します。通常のNeRFキャプチャセットアップでは、マルチビュー情報を取得するために移動カメラが必要です(しばしばカメラ位置の推定に続きます)。概念的には単純ですが、実際には、目の画像から3D NeRFを再構築することは困難です。最初の困難は、ソース分離です。彼らは、人間の目の複雑な虹彩のテクスチャと反射を区別する必要があります。 これらの複雑なパターンにより、3D再構築プロセスが不明瞭になります。通常、正常なキャプチャでは、場面のクリーンな写真に対して、虹彩のテクスチャが混在することはありません。この構成により、再構築技術はより困難になり、ピクセルの相関が崩れます。角膜のポーズの推定は、2つ目の困難を提示します。画像観察から正確に位置を特定することが困難であり、小さく、難解な目です。ただし、それらの位置と3D方向の正確さは、マルチビュー再構築にとって重要です。 これらの困難を克服するために、この研究の著者は、虹彩テクスチャを全体的な輝度場から区別しやすくするために、2つの重要な要素を追加して、目の画像でNeRFをトレーニングするためにNeRFを再利用しました。短い放射線を使用したテクスチャ分解(a)およびアイポーズの微調整(b)です。彼らは、現実的なテクスチャを持つ人工的な角膜から反射をキャプチャする写真で複雑な屋内環境の合成データセットを作成して、彼らの技術のパフォーマンスと効果を評価します。彼らはまた、いくつかのアイテムで実際に収集された人工および実際の眼球画像の研究を行い、彼らの方法論のいくつかの設計決定を支援します。 これらが彼らの主な貢献です。 •彼らは、過去の画期的な業績と最新のニューラルレンダリングの最新の進歩を融合させた、観察者の環境の3D再構築のための全く新しい技術を提供しています。 •彼らは、目の画像で虹彩テクスチャを分解するための放射状事前分布を導入することで、再構築された輝度場の品質を大幅に向上させています。 •彼らは、アイボールのノイズのあるポーズ推定を減らす角膜ポーズの微調整プロセスを開発することにより、人間の目から特徴を収集する特別な問題を解決しています。 これらの進展により、視線外の3Dシーンを明らかにし、キャプチャするためのアクシデンタルイメージングの広い範囲で研究・開発の新しい機会が生まれました。彼らのウェブサイトには、彼らの開発を実証するいくつかのビデオがあります。 図1は、目の反射を使用して放射輝度場を再構築することを示しています。人間の目は非常に反射します。被写体の目の反射だけを使用して、移動する頭を記録する一連のフレームから彼らが見ている3Dシーンを再構築して表示することができることを示しています。

Netflix株の時系列分析(Pandasによる)

はじめに データの時系列分析は、この場合はNetflixの株式などの数字の集まりだけではありません。Pandasと組み合わさることで、複雑な世界の物語を魅力的に紡ぐ織物のようなものです。神秘的な糸のように、出来事の起伏や流れ、トレンドの上昇や下降、そしてパターンの出現を捉えます。それは、私たちの現実を形作る隠されたつながりや相関関係を明らかにし、過去の生き生きとした描写を提供し、未来の一端を垣間見るものです。 時系列分析は単なるツール以上のものです。それは知識と洞察を得るためのゲートウェイであります。時間に関するデータの秘密を解き明かし、生の情報を貴重な洞察に変える力を与え、情報をもとに妥当な決定を下し、リスクを軽減し、新しい機会を活用する手助けをします。 このエキサイティングな冒険に一緒に乗り出し、時系列分析の魅力的な領域に飛び込んでみましょう! 学習目標 時系列分析の概念を紹介し、そのさまざまな分野での重要性を強調し、実際の例を示して、時系列分析の実用的な応用を紹介します。 Pythonとyfinanceライブラリを使用してNetflixの株式データをインポートする方法を実演することで、時系列データを取得し、分析のために準備するための必要な手順を学びます。 最後に、シフト、ローリング、およびリサンプリングなどの時系列分析で使用される重要なPandas関数に焦点を当て、時系列データを効果的に操作および分析するための方法を示します。 この記事は、Data Science Blogathonの一環として公開されました。 時系列分析とは何ですか? 時系列とは、連続的かつ等間隔の時間間隔で収集または記録されたデータのシーケンスです。 時系列分析は、時間によって収集されたデータポイントを分析する統計的技術です。 これには、データの視覚化、統計モデリング、予測方法などの技術が含まれます。 順次データのパターン、トレンド、依存関係を研究し、洞察を抽出し、予測を行うことが含まれます。 時系列データの例 株式市場データ:歴史的な株価を分析してトレンドを特定し、将来の価格を予測する。 天気データ:時間の経過に伴って温度、降水量、その他の変数を研究して、気候パターンを理解する。 経済指標:GDP、インフレ率、失業率を分析して、経済のパフォーマンスを評価する。 売上データ:時間の経過に伴って売上高を調べ、パターンを特定し、将来の売上高を予測する。 ウェブトラフィック:ウェブトラフィックメトリックを分析して、ユーザーの行動を理解し、ウェブサイトのパフォーマンスを最適化する。 時系列の構成要素 時系列の4つの構成要素があります。それらは次のとおりです。…

PatchTST 時系列予測における画期的な技術革新

トランスフォーマーベースのモデルは、自然言語処理の分野(BERTやGPTモデルなど)やコンピュータビジョンなど、多くの分野で成功を収めていますしかし、時間の問題になると...

アルトコインへの投資:暗号市場の包括的ガイド

アルトコインとは、ビットコインの後に登場した他の暗号通貨のことですこれらのデジタル通貨は、分散型ブロックチェーン技術を介して運営され、先駆的な暗号通貨であるビットコインとは異なる用途を提供しています 「アルトコイン」という用語は、暗号空間で数年間使用されており、ビットコインを除く多数の暗号通貨を指します… アルトコインへの投資:暗号市場の包括的ガイド 詳細はこちら»

AWSにおけるマルチモデルエンドポイントのためのCI/CD

生産用機械学習ソリューションの再トレーニングと展開を自動化することは、モデルが共変量シフトを考慮しながら、誤りや不要な人間の介入を制限するための重要なステップです

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us