Learn more about Search Results on - Page 14
- You may be interested
- アマゾンセージメーカースタジオを使用し...
- 「Ego-Exo4Dを紹介:ビデオ学習とマルチモ...
- 「ウォールストリートを打ち倒すと誓われ...
- 🤗 Transformersでn-gramを使ってWav2Vec2...
- GPT-3がMLOpsの将来に与える意味とは?デ...
- バイアス、有害性、および大規模言語モデ...
- 「UBCカナダの研究者が、都市ドライバーに...
- ユニ3D:スケールで統一された3D表現を探...
- シリコンバレー、『シンギュラリティ』が...
- 「不確実な世界での自律的なイノベーション」
- なぜMetaが非常に強力なAIモデルを無料で...
- 「Python制御フローチートシート」
- パーセプトロンからアダラインまで –...
- 「AnthropicがClaude 2を発表:コーディン...
- 「もしも、視覚のみのモデルを、わずかな...
WindowsアプリケーションにおけるハードウェアアクセラレーテッドAIをONNX RTを使用して実現する
「クアルコムのAIスタックは、ONNX RTをサポートし、Snapdragonアプリ上でハードウェアアクセラレーションされたAIを利用することができますSnapdragon上のWindowsは、モバイルコンピューティングの進化を経て構築された次世代Windowsプラットフォームです」
このAI研究では、BOFT(Foundationモデルの適応のための新しい一般ファインチューニングAIメソッド)を紹介します
人工知能の分野における最近の進展、特に大規模言語モデルの導入は、ほぼすべての領域でAIの道を開いています。ChatGPTやStable Diffusionなどの基本モデルは、顕著な汎化能力を持っています。しかし、これらのモデルをゼロからトレーニングすることは、パラメータの数の増加のために難しい課題です。 モデルの微調整アプローチは、追加の推論遅延を伴わないため簡単です。しかし、従来の微調整技術では、低い学習率を持つために、重み行列の関係情報を最適に維持することが難しいです。研究者は、オーソゴナル微調整(OFT)技術を研究しており、同じ直交行列を使用して同じ層のニューロンを変換することにより、微調整中にニューロン間のペアワイズ角度を維持します。この技術には良い潜在能力がありますが、同じ制限が生じるという問題があります。それは、直交行列の高次元性から生じる訓練可能なパラメータの膨大な数です。 この課題に対処するために、研究チームはオーソゴナルバタフライ(BOFT)というパラメータ効率の向上を可能にするユニークな最新の方法を紹介しました。Cooley-Tukey高速フーリエ変換技術におけるバタフライ構造からインスピレーションを受けて、BOFTは多数の因子化スパース行列と組み立てることで密な直交行列を生成します。直交行列をスパース行列の積として表現するためには、計算時間を空間と交換する必要があります。 研究チームは、これをグリッド構造のグラフ上の情報伝達問題と比較することで理解できると共有しており、表現力を保ちながら訓練可能なパラメータを制限するさまざまなスパース行列因子化技術を使用することが可能になります。BOFTは、Cooley-Tukeyのバタフライグラフに触発されており、その主な革新はバタフライ因子化プロセスです。 この因子化を利用することで、O(log d)のスパース行列の積で密な行列を生成することができます。各スパース行列において直交性を保証することで、BOFTはO(d log d)のパラメータで効率的な直交パラメータ化を実現し、オリジナルのOFTパラメータ化から大幅に削減します。BOFTは一般的な直交微調整フレームワークを提供し、OFTを包括します。 研究チームは、OFTのブロック対角構造とBOFTを比較し、効果的な訓練可能なパラメータを削減するためにBOFTとOFTの両方が直交行列にスパース性を追加することを示しました。しかし、ダウンストリームアプリケーションでは、BOFTのバタフライ構造によって、フル直交行列と単位行列の間でよりスムーズな補間が可能な、より小さな仮説クラスが提供されます。この構造的アプローチは、ローラの低ランク構造と比較することで、低ランクとスパース行列の両方がパラメータ効率を達成する構造化アプローチであることを強調するために行われました。 研究者たちは、主な貢献を以下のようにまとめています。 ダウンストリームタスクのための大規模モデルの適合性を向上させるために、直交微調整のパラメータ効率の問題を研究しました。 情報伝達のための新しいフレームワークが紹介され、パラメータ効率の高い密な直交行列の構築の問題がグリッド構造グラフ内の課題として再構成されました。 パラメータ効率の高い直交微調整手法であるオーソゴナルバタフライ(BOFT)が紹介されました。 BOFTによる訓練可能なパラメータの劇的な削減を保ちながら、表現力とトレーニング安定性を維持するための行列因子化と理論的な説明が議論されました。 BOFTは、適応アプリケーションにおいて最先端の技術を上回り、その優れたパラメータ効率と汎化能力を示しました。
アニメーションワードクラウドでのデータストーリーテリング’ (Animeshon wādo kuraudo de no data sutooriteringu)
アニメーションされたワードクラウドは、テキストサンプルアイテムの連続したシーケンスであるn-gram(連続した文字列)の絶対的な頻度を時間の経過とともに画像のシーケンスとしてビデオファイルで表示します単語により重要性を与えます...
「Amazon Textractの新しいレイアウト機能は、一般的な目的と生成型のAIドキュメント処理タスクに効率をもたらします」
Amazon Textractは、任意のドキュメントや画像から自動的にテキスト、手書き、データを抽出する機械学習(ML)サービスですAnalyzeDocument Layoutは、ドキュメントから段落、タイトル、字幕、ヘッダー、フッターなどのレイアウト要素を自動的に抽出する新機能ですこのレイアウト機能は、Amazon Textractの単語と行の検出を拡張します
「Amazon SageMaker JumpStartを使用したスケーラブルなテキスト埋め込みと文の類似性検索」
この記事では、SageMaker Python SDKを使用してテキスト埋め込みと文の類似性の使用方法を示します文の類似性は、LLMによって埋め込まれた2つのテキストの間の類似度を評価することを意味しますこれは、検索増強生成(RAG)などのアプリケーションの基本ステップです
「MATLABとAmazon SageMakerによる機械学習」
この投稿はMathWorksのBrad Duncan、Rachel Johnson、Richard Alcockとの共同執筆ですMATLABはデータ処理、並列コンピューティング、自動化、シミュレーション、機械学習、人工知能など、さまざまなアプリケーションにおいて人気のあるプログラミングツールです自動車、航空宇宙、通信、製造業など多くの産業で頻繁に使用されています
センスタイムリサーチは、長文から人間の動きと軌跡を生成するための新しい人工知能アプローチ「Story-to-Motion」を提案しています
人工知能はほとんどの産業に進出しています。ストーリーから自然な人間の動きを作り出すことは、アニメーション、ビデオゲーム、映画の産業を完全に変革する力を持っています。最も困難なタスクの一つは、キャラクターが異なるエリアを移動し、特定のアクションを行う必要がある場合のストーリーからモーションへの変換です。詳細な説明を基に、このタスクは高レベルのモーションセマンティック制御と軌跡を扱う低レベル制御のスムーズな統合を必要とします。 テキストからモーションやキャラクターコントロールに多くの努力が注がれてきましたが、適切な解決策はまだ見つかっていません。既存のキャラクターコントロール手法には多くの制約があり、テキストの説明に対応することができません。現在のテキストからモーション手法でも、より多くの位置制約が必要であり、不安定なモーションが生成される結果となります。 これらの課題を克服するために、研究者のチームが独自のアプローチを導入しました。このアプローチは、入力テキストに合わせて制御されたトラジェクトリと連続的かつ無限に長いモーションを生成するのに非常に効果的です。提案されたアプローチには以下の3つの主要なコンポーネントがあります。 テキストによるモーションスケジューリング:現代の大規模な自然言語モデルは、長いテキストの説明からテキストによるモーションスケジューラとして、テキスト、位置、期間のペアを取ります。この段階では、生成されるモーションがストーリーに基づいており、各アクションの位置と長さについての詳細も含まれます。 テキストによるモーションリトリーバルシステム:モーションのマッチングと制約によってトラジェクトリとセマンティックの組み合わせで総合的なモーションリトリーバルシステムを作成しました。これにより、生成されるモーションがテキストの説明に沿ったセマンティックと位置の特性を満たすことが保証されます。 プログレッシブマスクトランスフォーマ:フットスライディングや異常な姿勢といった遷移モーションの頻繁なアーティファクトに対処するために、プログレッシブマスクトランスフォーマが設計されました。この要素は、生成されるモーションの品質を向上させ、スムーズなトランジションとより現実的な外観を持つアニメーションを生成する上で不可欠です。 チームは、このアプローチをモーションのブレンディング、時間的なアクションの合成、軌跡の追跡という3つの異なるサブタスクでテストしたと共有しています。評価の結果、これまでのモーション合成技術と比較して、すべての領域で性能が向上したことが示されました。研究者は、主な貢献を以下のようにまとめています。 詳細なテキストの説明から包括的なモーションを生成するために、軌跡とセマンティクスが導入され、ストーリーからモーションへの問題が解決されました。 正確かつカスタマイズ可能なモーション合成を提供するために、広範なテキスト入力を使用する新しい方法であるテキストベースのモーションマッチングが提案されました。 ベンチマークデータセットで実施された実験によって示されるように、軌跡の追跡、時間的なアクションの合成、モーションのブレンディングのサブタスクで、このアプローチは最先端の技術を凌駕しています。 まとめると、このシステムはテキストナラティブからの人間のモーション合成において、大きな進歩です。ストーリーからモーションの問題に関連する課題に完全な解答を提供します。アニメーション、ゲーム、映画の業界に革新的な影響を与えることでしょう。
Amazon MusicはSageMakerとNVIDIAを使用してMLの訓練および推論のパフォーマンスとコストを最適化しています
Amazon Music のストリーミングのダイナミックな世界では、曲やポッドキャスト、プレイリストの検索ごとに物語、ムード、感情の洪水が待っていますこれらの検索は新たな発見、大切な経験、永続する思い出への入り口となります検索バーは単に曲を見つけるためだけではありません
「Quip Python APIs を使用して Quip スプレッドシートからデータを読み書きする方法」
「エコマースのショッピングアプリの例を挙げてみましょうシステムには、顧客から100件のネガティブな評価を受けるとサプライヤーをブラックリストに入れるというロジックがありますしかし、以下のようなシナリオも考えられます...」
効率的にPythonコードを書く方法:初心者向けチュートリアル
「Pythonでスキルアップしたいプログラマーですか? よりエレガントかつPythonらしいコードを書くのに役立ついくつかのPythonの機能を学んでみましょう」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.