Learn more about Search Results SDK - Page 14
- You may be interested
- 「クリエイティブな超能力を持つPix2Pixの...
- Airbnbの研究者がChrononを開発:機械学習...
- 「AIの透明性を解き放つ:Anthropicのフィ...
- 「7つの最高のクラウドデータベースプラッ...
- 「SECは企業にサイバー攻撃を報告するため...
- データストーリーテリングの芸術を習得す...
- AdaTape 適応計算とダイナミックな読み書...
- 自動化、Ansible、人工知能
- 「2023年の振り返り:Post-ChatGPT時代の...
- 「AI安全サミットに参加した国々によるブ...
- 「組織のためのカスタマイズされたコーデ...
- LLaMA 皆のためのLLM!
- 「バランスのとれたアクト:推薦システム...
- ChatGPTのクエリごとのエネルギー使用量
- ドリームクラフト3D:ブートストラップさ...
「AWS 上の生成型 AI を使用して、放射線学のレポートの所見から自動的に印象を生成します」
この投稿では、AWSサービスを使用して、公開されているLLMsを放射線学報告の要約のために微調整する戦略を示していますLLMsは、自然言語の理解と生成において卓越した能力を示しており、さまざまなドメインやタスクに適応できる基礎モデルとして機能します事前学習済みモデルを使用することには、重要な利点があります計算コストを削減し、炭素フットプリントを削減し、ゼロからモデルをトレーニングする必要がなく、最先端のモデルを使用できます
「Amazon SageMaker プロファイラーのプレビューを発表します:モデルトレーニングのワークロードの詳細なハードウェアパフォーマンスデータを追跡および可視化します」
本日は、Amazon SageMaker Profilerのプレビューを発表できることを喜んでお知らせしますこれはAmazon SageMakerの機能の一部であり、SageMaker上でディープラーニングモデルのトレーニング中にプロビジョニングされるAWSのコンピューティングリソースの詳細なビューを提供しますSageMaker Profilerを使用すると、CPUとGPUのすべてのアクティビティをトラックできますCPUとGPUの利用率、GPU上でのカーネルの実行、CPU上でのカーネルの起動、同期操作、GPU間のメモリ操作、カーネルの起動と対応する実行とのレイテンシ、CPUとGPU間のデータ転送などが含まれますこの記事では、SageMaker Profilerの機能について詳しく説明します
デシは、コード生成のためのオープンソース1Bパラメータの大規模言語モデル「DeciCoder」を紹介します
AIの速い世界では、効率的なコード生成は見過ごすことのできない課題です。ますます複雑なモデルの出現に伴い、正確なコード生成の需要は急増していますが、エネルギー消費と運用コストへの懸念も増しています。この効率のギャップに直面し、先駆的なAI企業であるDeciは、効率的かつ正確なコード生成の新たな基準を再定義することを目指す、10億パラメータのオープンソースLarge Language Model(LLM)であるDeciCoderを紹介します。 既存のコード生成モデルは、精度と効率の微妙なバランスに苦しんできました。この領域の代表的なプレーヤーであるSantaCoderは、広く使用されていますが、スループットとメモリ消費に制約があることが示されています。ここで、DeciCoderが変革的な解決策として登場します。DeciのAI効率の基盤に基づいているDeciCoderは、最先端のアーキテクチャと独自のニューラルアーキテクチャサーチ技術であるAutoNACを活用しています。しばしば不十分な手動の労力を伴うアプローチとは異なり、AutoNACは最適なアーキテクチャの生成プロセスを自動化します。その結果、NVIDIAのA10 GPUに最適化された印象的なアーキテクチャが生まれます。これにより、スループットが向上し、かつSantaCoderと同等の精度が実現されます。 DeciCoderのアーキテクチャは、革新の証です。8つのキーバリューヘッドを備えたGrouped Query Attentionを組み込むことで、計算とメモリ使用量が合理化され、精度と効率の調和が実現されます。SantaCoderとの直接対決で、DeciCoderは独自の特徴を持っています – レイヤーが少ない(20対24)、ヘッドが多い(32対16)、および並列の埋め込みサイズ。これらの特徴は、AutoNACの複雑なダンスから派生し、DeciCoderの力を支えています。 DeciCoderの道のりは、革新と効率への執念によって特徴付けられています。この開発の示す意義は深いものです。DInfery LLMと併せてDeciCoderを活用することで、ユーザーはSantaCoderの驚異的な3.5倍のスループット向上の力を発揮することができます。この革新の物語は効率の向上だけで終わるものではありません。環境に配慮したAIに関しても同様です。Deciの環境に対する強い関心は、A10G GPU上での1つのモデルインスタンスあたりの二酸化炭素排出量を324 kg削減することで表現されています。これは、環境意識の高いAIへの有望な一歩となります。 https://deci.ai/blog/decicoder-efficient-and-accurate-code-generation-llm/ DeciCoderは孤立した取り組みではありません。これはDeciのAI効率への包括的なアプローチの一環です。同社が高効率な基盤LLMやテキストから画像へのモデルを導入する新時代の到来を告げる中で、開発者は、ファインチューニング、最適化、展開の領域を再定義する予定の生成AI SDKを期待することができます。この包括的なスイートは、効率の利点を巨大な企業や小規模なプレーヤーにも提供し、AIの可能性を民主化します。 DeciCoderのストーリーは、そのアーキテクチャとベンチマークにとどまるものではありません。それは力を与えることについての物語です。最小の制約でDeciCoderをプロジェクトに統合することができる許可されたライセンスは、開発者やビジネスに力を与えます。商用アプリケーションでDeciCoderを展開する柔軟性は、Deciのミッションであるイノベーションと成長を促進することと一致しています。これは、単にAIについての物語ではなく、技術とその影響においてポジティブな変革を起こすことについての物語です。 https://deci.ai/blog/decicoder-efficient-and-accurate-code-generation-llm/ 全体的に、DeciCoderは単なるモデル以上であり、AIの効率の潜在能力の実現です。AutoNAC、グループ化されたクエリアテンション、専用の推論エンジンのシナジーを通じて、高性能で環境に配慮したモデルを提供します。DeciCoderの紹介によって示されるDeciの旅は、AIコミュニティのための明かりであり、私たちの惑星の資源を尊重しながら技術革新を求める呼びかけです。それは単なるコードではなく、より持続可能で効率的なAIの未来のためのコードです。
「Amazon SageMakerを使用したフェデレーテッドラーニングによる分散トレーニングデータを用いた機械学習」
この投稿では、分散トレーニングデータを使用してAmazon SageMakerでフェデレーテッドラーニングを実装する方法について説明します
この秋登場予定:NVIDIA DLSS 3.5 が Chaos Vantage、D5 Render、Omniverse、そして人気のあるゲームタイトルに対応します
エディターの注:この投稿は、弊社の週刊「NVIDIA Studio」シリーズの一部であり、注目のアーティストを称え、クリエイティブなヒントやトリックを提供し、NVIDIA Studioテクノロジーがクリエイティブなワークフローを向上させる方法を示しています。また、新しいGeForce RTX 40シリーズGPUの機能、技術、リソースについて詳しく掘り下げ、コンテンツ作成を劇的に加速する方法も説明しています。 年間最大のゲームイベントであるGamescomが明日ドイツのケルンで開催されますが、ゲーマーやコンテンツクリエイターは、今週NVIDIA Studioで最新のイノベーション、ツール、AIパワードテクノロジーを見つけることができます。 公式オープンの前夜に、NVIDIAは、リアルタイムの3Dクリエイティブアプリやゲームにおいて、従来のレンダリング方法よりも美しくリアルなレイトレーシングビジュアルを作成する新しいニューラルレンダリングAIモデルである「NVIDIA DLSS 3.5 featurning Ray Reconstruction」を発表しました。 NVIDIA Omniverse上に構築された無料のモディングプラットフォームである「NVIDIA RTX Remix」は、古典的なゲームのための#RTXONモッズを作成して共有するためのツールを提供します。また、私たちはValveのハイレーティングゲームである「Half-Life 2」のコミュニティリマスタープロジェクトである「Half-Life 2 RTX: An RTX Remix Project」も発表しました。…
Together AIがLlama-2-7B-32K-Instructを発表:拡張コンテキスト言語処理の大きな進歩
自然言語処理の広大な領域において、多面的な課題が生じています。それは、複雑で長大な指示を適切に理解し、応答する能力です。コミュニケーションの微妙なニュアンスがより複雑になるにつれて、既存のモデルが広範な文脈の複雑さに対処する際の不足点が露呈してきました。本書では、Together AIの献身的なチームが生み出した非凡な解決策が明らかになります。これは、言語処理の基盤そのものを再構築するという約束を持つソリューションです。このイノベーションは、特に広範な文脈の微妙な把握を必要とするタスクにおいて、重要な意味を持ちます。 現代の自然言語処理技術は、長大な指示の複雑さに取り組むためのツールや手法に頼っています。しかし、研究チームが開発したLlama-2-7B-32K-Instructは、有望な新たな領域に進出しています。Together Inference APIの能力を巧みに活用することで、チームは短い文脈のシナリオでのパフォーマンスを損なうことなく、長い指示の領域で優れたモデルを構築しました。この戦略は、Alpaca、Vicuna、WizardLM、Orcaなどのモデルが取り入れている成功したアプローチと共通しており、強力な言語モデルを活用することで貴重な洞察が得られます。 Llama-2-7B-32K-Instructの成功は、研究チームによって厳格に指示された4つのステップの過程に基づいています。この旅は、モデルの厳密な蒸留から始まります。これは、会話、人間の指示、およびLlama-2-70B-Chatから派生した出力を包括する多様なデータセットの統合です。この幅広いミックスにより、モデルは繊細な指示を理解することができます。研究チームは、Together Inference APIを駆使してLlama-2-70B-Chatとクエリを行い、Llama-2-7B-32K-Instructを微調整しています。 ダイナミックな微調整プロセスの後、モデルは厳格な評価を受けます。要約から複数のドキュメントにわたる質問応答まで、さまざまなタスクのベンチマークとしてのパフォーマンスが測定されます。Llama-2-7B-32K-Instructは、GPT-3.5-Turbo-16K、Llama-2-7b-chat、Longchat-7b-16k、Longchat-7b-v1.5-32kを含む既存のベースラインモデルを常に上回っています。この堅固なパフォーマンスは、モデルが長大な指示を処理し、さまざまなベンチマークで優れた結果を残す能力を裏付けています。 https://together.ai/blog/llama-2-7b-32k-instruct https://together.ai/blog/llama-2-7b-32k-instruct 結論として、Llama-2-7B-32K-Instructの登場は、長大な文脈の言語処理によって引き起こされる複雑さに取り組むための注目すべき進展を示しています。研究チームの正当な手法と革新的なTogether Inference APIの利用は、複雑な指示に対応し、新たなパフォーマンスの基準を確立するモデルに結実しました。Llama-2-7B-32K-Instructは、複雑な文脈を理解し、関連する応答を生成する能力の間隔を埋めることで、自然言語処理の将来の進歩を示す説得力のあるプレビューを提供します。この進歩は、複雑な指示から徹底的な理解と巧妙な応答の生成を要求するアプリケーションに力を与え、未知の領域に向けて分野を推進することができるでしょう。
「Amazon Redshift」からのデータを使用して、Amazon SageMaker Feature Storeで大規模なML機能を構築します
Amazon Redshiftは、一日にエクサバイトのデータを分析するために数万人の顧客に利用されている、最も人気のあるクラウドデータウェアハウスです多くのプラクティショナーは、Amazon SageMakerを使用して、完全に管理されたMLサービスであるAmazon Redshiftデータセットを規模拡大して機械学習(ML)を行うために、オフラインで機能を開発する要件を持っています
効率化の解除:Amazon SageMaker Pipelinesでの選択的な実行の活用
MLOpsは、しばしば機械学習(ML)モデルを本番環境で展開するための重要な学問分野ですトレーニングと展開をしたい単一のモデルに焦点を当てるのは自然なことですしかし、現実には、数十、または数百のモデルを扱うことがあり、そのプロセスには複数の複雑なステップが関与する場合もありますそのため、重要なのは...
「文書理解の進展」
Google Research、Athenaチームのソフトウェアエンジニア、サンディープ・タタ氏による投稿 過去数年間で、複雑なビジネスドキュメントを自動的に処理し、それらを構造化されたオブジェクトに変換するシステムの進歩が急速に進んでいます。領収書、保険見積もり、財務報告書などのドキュメントからデータを自動的に抽出するシステムは、エラーが多く手作業が必要な作業を回避することで、ビジネスワークフローの効率を劇的に向上させる潜在能力を持っています。Transformerアーキテクチャに基づいた最近のモデルは、驚異的な精度の向上を示しています。PaLM 2などのより大規模なモデルは、これらのビジネスワークフローをさらに効率化するために活用されています。しかし、学術文献で使用されるデータセットは、現実のユースケースで見られる課題を捉えることができていません。その結果、学術ベンチマークはモデルの精度を高く報告していますが、同じモデルを複雑な現実世界のアプリケーションに使用すると、精度が低下します。 KDD 2023で発表された「VRDU: A Benchmark for Visually-rich Document Understanding」では、このギャップを埋め、研究者がドキュメント理解タスクの進捗状況をより正確に追跡できるようにするため、新しいVisually Rich Document Understanding(VRDU)データセットの公開を発表しています。私たちは、ドキュメント理解モデルが頻繁に使用される実世界のドキュメントの種類に基づいて、良いドキュメント理解ベンチマークのための5つの要件をリストアップしています。そして、現在研究コミュニティで使用されているほとんどのデータセットがこれらの要件のいずれかを満たしていないことを説明し、一方でVRDUはこれらの要件をすべて満たしていることを説明しています。私たちは、VRDUデータセットと評価コードをクリエイティブ・コモンズ・ライセンスの下で公開することを発表できることを喜んでいます。 ベンチマークの要件 まず、実世界のユースケースでの最先端のモデルの精度(例:FormNetやLayoutLMv2との比較)を学術ベンチマーク(例:FUNSD、CORD、SROIE)と比較しました。その結果、最先端のモデルは学術ベンチマークの結果とは一致せず、実世界でははるかに低い精度を提供しました。次に、ドキュメント理解モデルが頻繁に使用される典型的なデータセットを学術ベンチマークと比較し、実世界のアプリケーションの複雑さをより良く捉えるための5つのデータセットの要件を特定しました: リッチスキーマ:実際の実務では、構造化抽出のためのさまざまな豊富なスキーマが存在します。エンティティには異なるデータ型(数値、文字列、日付など)があり、単一のドキュメント内で必須、オプション、または繰り返しの場合もあり、さらにネストする場合もあります。ヘッダ、質問、回答などの単純なフラットなスキーマの抽出タスクでは、実務でよく遭遇する問題を反映していません。 レイアウト豊かなドキュメント:ドキュメントには複雑なレイアウト要素が含まれている必要があります。実践的な設定での課題は、ドキュメントにテーブル、キーと値のペア、単一列と二列のレイアウトの切り替え、異なるセクションのフォントサイズの変化、キャプション付きの画像や脚注などが含まれることです。これに対して、ほとんどのドキュメントが文、段落、セクションヘッダを持つ文章で構成されているデータセットとは対照的です。これは、長い入力に関する古典的な自然言語処理文献の焦点となるようなドキュメントの種類です。 異なるテンプレート:ベンチマークには異なる構造のレイアウトやテンプレートが含まれるべきです。特定のテンプレートから抽出することは、高容量モデルにとっては容易ですが、実際の実務では新しいテンプレート/レイアウトにも対応できる汎化能力が必要です。ベンチマークのトレーニングとテストの分割によって測定される能力です。 高品質なOCR:ドキュメントは高品質な光学文字認識(OCR)の結果を持っている必要があります。このベンチマークでは、VRDUタスク自体に焦点を当て、OCRエンジンの選択によってもたらされる変動性を除外することを目指しています。 トークンレベルの注釈:ドキュメントには、対応する入力テキストの一部としてマッピングできる正解の注釈が含まれている必要があります。これにより、各トークンを対応するエンティティの一部として注釈付けすることができます。これは、単にエンティティから抽出するための値のテキストを提供するだけではありません。これは、与えられた値に偶発的な一致があることを心配する必要がないクリーンなトレーニングデータの生成に重要です。たとえば、一部の領収書では、「税抜き合計」フィールドが「合計」フィールドと同じ値を持つ場合があります。トークンレベルの注釈があれば、両方の一致する値が「合計」フィールドの正解としてマークされたトレーニングデータを生成することを防ぐことができ、ノイズのない例を生成できます。 VRDUのデータセットとタスク VRDUデータセットは、登録フォームと広告購入フォームの2つの公開データセットを組み合わせたものです。これらのデータセットは、実世界の使用例を代表する例を提供し、上記の5つのベンチマーク要件を満たしています。…
「分析ストリーム処理への控えめな紹介」
「基礎は揺るぎない、壊れることのない構造物の土台です成功したデータアーキテクチャを構築する際には、データがシステム全体の中心的な要素です...」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.