Learn more about Search Results EU - Page 14
- You may be interested
- AIを活用した亀の顔認識による保全の推進
- DeepBrain AIレビュー:最高のAIアバター...
- ChatGPTでお金を稼ぐ5つの方法
- 「H1 2023 アナリティクス&データサイエ...
- カスタムレンズを使用して、優れたアーキ...
- 実験、モデルのトレーニングおよび評価:A...
- Salesforceは、データ駆動型のAIとCRMを通...
- より小さいほうが良いです:Xeon上で効率...
- 科学者たちは、エイジ・オブ・エンパイア...
- ボロノイ格子:実用的な応用
- 「Rustでの14倍のスピードブーストには、P...
- 「GPU上の行列乗算」.
- 2024年の予測17:RAG to RichesからBeatle...
- 「ChatGPTの王座陥落:クロードが新しいAI...
- アメリカは、市民全員に関する情報を公然...
「データ自体よりもデータ生成プロセスを理解することの方が重要」
乳幼児期初期には、我々の脳は既に相関と因果関係を結びつけ、周りで起こるすべての出来事に対して説明を見つけようとしますもし私たちの後ろに車が近づいてくるとすれば…
「松ぼっくりベクトルデータベースとAmazon SageMaker JumpStartのLlama-2を使用したリトリーバル増強生成によって幻覚を軽減する」
産業全体でのLLMの採用は止まることのないように見えますが、それらは新しいAIの波を支えるより広範な技術エコシステムの一部です多くの対話AIのユースケースでは、Llama 2、Flan T5、BloomのようなLLMがユーザーのクエリに応答するために必要ですこれらのモデルは質問に答えるためにパラメトリックな知識に依存しています モデルは[…]
SetFitABSA SetFitを使用したFew-Shotアスペクトベースの感情分析
SetFitABSAは、テキスト内の特定の側面に対する感情を検出する効率的な技術です。 Aspect-Based Sentiment Analysis (ABSA)は、テキスト内の特定の側面に対する感情を検出するタスクです。例えば、「この電話は画面が素晴らしいですが、バッテリーは小さすぎます」という文では、側面の用語は「画面」と「バッテリー」であり、それぞれに対する感情極性はPositiveとNegativeです。 ABSAは、さまざまなドメインの製品やサービスの顧客フィードバックを分析して貴重な情報を抽出するために、組織によって広く使用されています。しかし、ABSAのためのラベル付けトレーニングデータは、トレーニングサンプル内で側面を手動で細かく識別する必要があるため、手間のかかる作業です。 Intel LabsとHugging Faceは、ドメイン固有のABSAモデルのfew-shotトレーニングのためのフレームワークであるSetFitABSAを紹介しています。SetFitABSAは、few-shotシナリオでLlama2やT5などの生成モデルに比べて競争力があり、さらに優れた性能を発揮します。 LLMベースの手法と比較して、SetFitABSAには次の2つのユニークな利点があります: 🗣 プロンプトが不要です: LLMを使ったfew-shot in-context学習では、結果がもろくなり、表現に敏感になり、ユーザーの専門知識に依存する手作りのプロンプトが必要です。SetFitABSAは、ラベル付けされた少数のテキスト例から直接豊かな埋め込みを生成することで、プロンプトを完全に不要とします。 🏎 高速トレーニング: SetFitABSAは、わずかなラベル付きトレーニングサンプルのみを必要とします。さらに、専門のタグ付けツールを必要としないシンプルなトレーニングデータ形式を使用します。これにより、データのラベリングプロセスが迅速かつ容易になります。 このブログ記事では、SetFitABSAの動作方法と、SetFitライブラリを使用して独自のモデルをトレーニングする方法を説明します。では、さっそく見ていきましょう! どのように機能しますか? SetFitABSAの3つのステージからなるトレーニングプロセス SetFitABSAは3つのステップで構成されています。第1ステップでは、テキストから側面候補を抽出し、第2ステップでは、側面候補を側面または非側面として分類し、最終ステップでは抽出された各側面に感情極性を関連付けます。第2ステップと第3ステップはSetFitモデルに基づいています。 トレーニング 1. 側面候補の抽出…
「国々がAIの悪影響に対処する世界的な競争で遅れをとっている方法」
「人工知能の力に驚いたヨーロッパ、アメリカおよび他の地域は対応しようとしていますが、技術は彼らの政策よりもより急速に進化しています」
2024年にSQLの概念をマスターするためのトップ10冊の書籍
はじめに 構造化クエリ言語(SQL)は、関係型データベース管理システムの基盤です。SQLは、大規模なデータベースからデータを操作および取得するための強力なツールとして機能します。2024年に入ると、SQLの習熟に対する需要は、さまざまな業界でますます高まっており、プロフェッショナルがその概念を徹底的に習得する必要性が強調されています。経験豊富な開発者、データアナリスト、またはデータベース管理者であっても、ダイナミックなSQLの世界で先を見据えるためには、適切なリソースを手に入れることが重要です。 本記事では、2024年におけるSQLコンセプトの習得に欠かせないトップ10の書籍を探求します。これらの推薦書籍は、パフォーマンスの最適化から実践的な応用まで、SQLの幅広いトピックをカバーし、言語の包括的な理解を保証します。 2024年にSQLコンセプトを習得するためのトップ10の書籍 1. Markus Winand著「SQL Performance Explained」 最初にご紹介するのはMarkus Winandの「SQL Performance Explained」です。これは、SQLクエリの最適化とデータベースのパフォーマンス向上を目指す開発者のための必須リソースとして評価されています。Winandは表面的な議論を超えて、SQLパフォーマンスチューニングの複雑な側面に深く踏み込み、実践的な洞察と戦略を提供しています。この本は、Winandの明解な説明と実世界の例により、経験レベルに応じた開発者にも複雑なパフォーマンスの概念を理解しやすくしており、高パフォーマンスなアプリケーションを作り上げることを目指す開発者にとっての基石となります。 2. Bill Karwin著「SQL Antipatterns: Avoiding the Pitfalls of Database Programming」 Bill…
Google AI研究のTranslatotron 3:革新的な教師なし音声対音声翻訳アーキテクチャの発表
音声から音声への翻訳(S2ST)は、言語の壁を取り払うための画期的な技術ですが、並行音声データの不足がその進展を妨げてきました。既存のほとんどのモデルは、教師付きの設定を必要とし、合成されたトレーニングデータからの翻訳と音声属性の再構築の学習に苦労しています。 音声から音声への翻訳では、Google AIの以前のモデルであるTranslatotron 1やTranslatotron 2など、Googleの研究チームによって直接言語間の音声を翻訳することを目指したモデルが注目されてきました。しかし、これらのモデルは教師付きのトレーニングと並行音声データに依存しているため、制約がありました。課題はそのような並行データの不足にあり、S2STモデルのトレーニングを複雑な課題にしています。ここで、Googleの研究チームが紹介した画期的な解決策であるTranslatotron 3が登場します。 研究者たちは、音声翻訳のための公開データセットのほとんどがテキストから半合成または完全合成されたものであることに気付きました。これにより、翻訳の学習と音声属性の正確な再構築に関して、さらなるハードルが生じています。これに対応するために、Translatotron 3は、単一言語データのみから翻訳タスクを学習することを目指す非教師付きS2STの概念を導入することで、パラダイムシフトを実現します。このイノベーションにより、さまざまな言語ペア間での翻訳の可能性が拡大し、一時停止、話す速度、話者の身元などの非テキストの音声属性の翻訳能力が導入されます。 https://blog.research.google/2023/12/unsupervised-speech-to-speech.html Translatotron 3のアーキテクチャは、非教師付きS2STの課題に対処するために3つのキー要素で設計されています。 SpecAugmentを用いたマスク付きオートエンコーダとしてのプレトレーニング: 全体のモデルはマスク付きオートエンコーダとして事前にトレーニングされ、音声認識のためのシンプルなデータ拡張手法であるSpecAugmentを利用します。SpecAugmentは入力オーディオの対数メルスペクトログラム上で動作し、エンコーダの汎化能力を向上させます。 多言語非教師付き埋め込みマッピングに基づくUnsupervised Embeddings (MUSE): Translatotron 3は、対称言語でトレーニングされたテクニックであるMUSEを活用し、ソース言語とターゲット言語の間で共有の埋め込み空間を学習します。この共有の埋め込み空間により、入力音声の効率的かつ効果的なエンコーディングが可能となります。 バックトランスレーションによる再構築損失: モデルは、非教師付きのMUSE埋め込み損失、再構築損失、およびS2Sバックトランスレーション損失の組み合わせでトレーニングされます。推論中に、共有エンコーダは入力を多言語埋め込み空間にエンコードし、その後、ターゲット言語デコーダによってデコードされます。 Translatotron 3のトレーニング手法は、再構築とバックトランスレーション項を持つ自己符号化を含んでいます。最初の部分では、ネットワークはMUSE損失と再構築損失を使用して、入力を多言語埋め込み空間に自己符号化するようにトレーニングされます。このフェーズでは、ネットワークが意味のある多言語表現を生成することを目的としています。二番目の部分では、ネットワークはバックトランスレーション損失を使用して入力スペクトログラムを翻訳するようにトレーニングされます。この二番目のトレーニングの際に、潜在空間の多言語性を確保するために、MUSE損失と再構築損失が適用されます。両方のフェーズでエンコーダの入力にSpecAugmentが適用され、意味のあるプロパティが学習されるようになっています。 Translatotron 3の経験的評価は、基準のカスケードシステムに比べて会話の微妙なニュアンスを保護する点でその優位性を示しています。このモデルは、翻訳の品質、話者の類似性、音声の品質において優れた性能を発揮します。非教師付きの方法であるにもかかわらず、Translatotron…
スターリング-7B AIフィードバックからの強化学習によるLLM
UCバークレーの研究チームが、オープンソースの大規模言語モデル(LLM)であるStarling-7Bを導入しています。このモデルは人工知能フィードバック(RLAIF)からの強化学習を使用し、最新のGPT-4ラベル付きランキングデータセットであるNectarの力を活用しています。洗練された報酬トレーニングとポリシーチューニングパイプラインを組み合わせたStarling-7B-alphaは、言語モデルの性能において新たな基準を打ち立て、MT-Benchを除くすべてのモデルをしのぐ性能を発揮しています(ただし、OpenAIのGPT-4とGPT-4 Turboには及ばない)。 強化学習の可能性 教師あり微調整はチャットボットシステム開発において効果を示していますが、人間のフィードバックからの強化学習(RLHF)またはAIフィードバック(RLAIF)の可能性は限定的に調査されてきました。Zephyr-7BやNeural-Chat-7Bのような既存のモデルは、主導的な微調整(SFT)モデルと比較してRLHFの潜在能力を十分に示していませんでした。 この問題に対処するため、研究チームはNectarを導入しました。これは、チャットに特化した高品質なランキングデータセットであり、183,000のプロンプトと3,800,000のペアワイズ比較からなります。このデータセットはRLHFの研究をより詳細に行うことを目的とし、さまざまなモデルから収集されたさまざまなプロンプトを提供しています。 報酬モデルであるStarling-RM-7B-alphaおよびファインチューンされたLLMであるStarling-LM-7B-alphaのHuggingFaceでのリリースは、オープンソースAI研究の重要な進展を示しています。このモデルのMT-Benchスコアは、7.81から印象的な8.09に向上し、チャットボットの助けになる度合いを測るAlpacaEvalの向上も88.51%から91.99%に大幅に改善されました。 他にも読む: 強化学習とは何か、そしてそれはどのように機能するのか(2023年) モデルの評価 Starling-7Bの評価には独自の課題があります。このLLMは、RLHF後の助けや安全性の機能が向上していることを示すMT-BenchおよびAlpacaEvalスコアの改善が証明されています。ただし、知識ベースの質問応答や数学、コーディングに関連する基本的な機能は一貫しているか、わずかな回帰を経験しています。 直接チャットや匿名の比較のためにLMSYSチャットボットアリーナに組み込まれることで、人間の選好をテストするプラットフォームが提供されます。評価はまた、チャットモデルのベンチマークとしてのOpenLLMリーダーボードの使用における制限を強調し、Alpaca EvalとMT-Benchによるニュアンスのある評価の重要性を強調しています。 合成優先データのGoodhartの法則 考慮すべき重要な点は、合成された優先データのGoodhartの法則です。より高いMT-Benchスコアは、GPT-4による改善されたモデルの性能を示していますが、それが必ずしも人間の選好と相関するわけではありません。RLHFは主に応答スタイルを向上させることに寄与しており、特に助けや安全性の側面でスケーリングオンラインRL方法のポテンシャルを示しています。 制限事項 Starling-7Bは優れた性能を持っていますが、推論や数学に関わるタスクには苦労しています。また、ジェイルブレイキングのプロンプトへの感受性や出力の冗長さなどの制限も認識されています。研究チームは改善のためにコミュニティとの協力を求めており、RLHFを使用したオープンデータセット、報酬モデル、言語モデルの向上に取り組んでいます。 私たちの意見 RLAIFアプローチと綿密なデータセット作成を備えたStarling-7Bは、言語モデルにおける強化学習のポテンシャルを示すものです。課題や制約はまだ残っていますが、改善への取り組みと大規模なコミュニティとの協力により、Starling-7BはAI研究の進展する風景において輝く存在となっています。RLHFメカニズムの洗練とAI安全性研究の最前線への貢献について、さらなるアップデートをお楽しみに。
テーブルの6つの高度な可視化
「Tableau(タブロー)は、データの可視化ツールであり、データの可視化、ダッシュボード、ストーリーの作成に使用されます私が最初にこのツールを使い始めた時、データの可視化を作成するために頻繁に「表示」機能を使用しました...」
「プロダクションに適したRAGアプリケーションの12のチューニング戦略ガイド」
「実稼働のための検索増強生成(RAG)アプリケーションのパフォーマンス向上に調整できる戦略とパラメータ」
「RetinaNetとKerasCVを使用した物体検出」
画像セグメンテーションをベースにしたミニプロジェクトを終えた後(こちらをご覧ください)、コンピュータビジョンの一環として、別の一般的なタスクに取り掛かる準備ができました:オブジェクト検出ですオブジェクト検出とは...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.