Learn more about Search Results App Store - Page 14
- You may be interested
- 「健康経済学とアウトカム研究における数...
- 食品生産者がサイバー攻撃に立ち向かうた...
- 数学的な問題解決におけるLLMの潜在能力を...
- 「人工知能がゼロトラストを強化する方法」
- 先駆的なデータオブザーバビリティー:デ...
- 「ニューヨーク州法案、3Dプリンターの購...
- なぜ科学者たちは仮想世界に没頭しているのか
- Databricks ❤️ Hugging Face 大規模言語モ...
- 「ビジネスアイデアのためのアレックス・...
- 「GeForce NOW-vemberは50以上の新しいゲ...
- CapPaに会ってください:DeepMindの画像キ...
- 「Pyroを使ったベイジアンABテスト」
- 「Med-PaLM Multimodal(Med-PaLM M)をご...
- 専門AIトレーニングの変革- LMFlowの紹介...
- 「DeepMind AIが数百万の動画のために自動...
ベクトルデータベース:初心者向けガイド!
ベクトルデータベースに入力すると、データの拡大する景色によって引き起こされる課題の解決策として現れた技術革新です
PythonとDashを使用してダッシュボードを作成する
この記事では、PythonとDashを使用してNetflixのダッシュボードを構築し、地図、グラフ、チャートを使用してコンテンツの配信と分類を視覚化する方法について説明しています
「2023年の最高のAIアバタージェネレーター10選」
ゲームの冒険に最適なバーチャルなキャラクターを選ぶというスリルを覚えていますか?今日では、バーチャルなアイデンティティはゲームを超えて私たちのオンラインの生活に溶け込んでいます。それらは単なる遊びではなく、ソーシャルメディアやデジタルプラットフォーム上で私たちを表すものです。AIアバタージェネレータは、個人のためにパーソナライズされたアバターを作成するために広く使用されています。この記事では、10の最高のAIアバタージェネレータについてご紹介します。 AIアバタージェネレータとは何ですか? ニューラルネットワークと人工知能アルゴリズムを使用して、AIアバタージェネレータは個々の人やチームのためにパーソナライズされたアバターを作成します。ユーザーは自分のセルフィー、肖像画、全身画像、またはテキストのプロンプトをアップロードしてパーソナライズされたアバターを生成する必要があります。これらは、倫理的な懸念に沿ってプライバシーを保ちながら機能します。 異なるAIアバタージェネレータは、革新的で創造的なアバターを生成するためのユニークな機能を提供しています。一部のAIアバタージェネレータは自動化されていますが、他のものはユーザーのニーズに応じてカスタマイズ可能です。ユニークなアバターを作成する目的は、AIアバタージェネレータを選ぶ際の決定基準の一つであるべきです。 トップ10のAIアバタージェネレータ 以下は、参考のための有料および無料のトップ10のAIアバタージェネレータのリストです: PicsArt Synthesia Aragon Fotor AIアバタージェネレータ Lensa AIマジックアバター Magic AIアバター Reface Dawn AI Starry AI Photoleap PicsArt PicsArtは他のソフトウェアアプリとは異なり、テキストやプロンプトを必要としません。ユーザーはアバターを生成するためにプリセットを選択し、好みに応じてカスタマイズする必要があります。アバターはギャラリーから画像を選択して生成することができます。PicsArtでは、AndroidやiPhoneであれば、10から30枚の写真で50から200のアバターを作成することができます。 無料版ではアバターの生成は利用できません。プレミアム機能を利用するためには、ソフトウェアの有料版にアクセスする必要があります。…
「ChatGPTのようなLLMの背後にある概念についての直感を構築する-パート1-ニューラルネットワーク、トランスフォーマ、事前学習、およびファインチューニング」
「たぶん私だけじゃないと思いますが、1月のツイートで明らかになっていなかったとしても、私は最初にChatGPTに出会ったときに完全に驚きましたその体験は他のどんなものとも違いました…」
「OceanBaseを使用して、ゼロからLangchainの代替を作成する」
「オーシャンベースとAIの統合からモデルのトレーニングやチャットボットの作成まで、興味深い旅を通じてこのトピックを探求します」
StreamlitとMongoDB:クラウドでのデータの保存
Streamlitは、公開アプリを無料で彼らのクラウドにデプロイすることができますが、ローカルで作成したファイルやデータベースは、アプリが終了すると存在しなくなりますこれは、あなたが望む振る舞いでないかもしれません
2023年のトップ10 AI QRコードジェネレーター
QRコードは、特に支払いの便利さから広く人気があります。金融の応用にとどまらず、QRコードはさまざまなデータタイプを包括するように進化しています。技術の進歩により、これらのコードのカスタマイズが可能となり、かつては単調な白黒のドットの配置だったものが、さまざまなパターンやイメージに触発された視覚的に魅力的なデザインに変わりました。AIはこのプロセスで中心的な役割を果たし、個々の好みに合わせたパーソナライズされたQRコードの作成において多くの画像オプションを提供します。このテクノロジーとカスタマイズの交差点により、ユーザーは機能的でありながら視覚的に魅力的で独自の好みに合わせたQRコードを生成することができるようになります。この記事では、AI QRコードジェネレーターの10の選択肢を紹介します。 なぜAI生成のQRコードを使用するのか? 伝統的なQRコードでは、情報の確保と直接的なアクセスは簡単です。しかし、AI生成のQRコードの選択肢は以下の理由からトレンドとなっています: ユニークなブランドアイデンティティの提供 ビジュアルな手がかりにより情報を伝え、内容の認識を容易にする 革新的なマーケティングキャンペーンの可能性を提供する 潜在的なビジネスの可能性と実際に生成されたビジネスの比較的な洞察を提供する データタイプの柔軟性 エラーの可能性がない 動的な変更の可能性 また、次の記事もご覧ください:2023年に使用するトップ10のAI画像生成ツール トップ10のAI QRコードジェネレーター これらのAI QRコードジェネレーターは、特定のニーズとブランディングの好みに合わせた独自のQRコードを作成することができます: Art QR Code(Android) V2A:AIによるQRアートジェネレーター(Android) Image Gallery QR Code…
LangChainとPinecone Vector Databaseを使用したカスタムQ&Aアプリケーションの構築
イントロダクション 大規模な言語モデルの登場は、現代における最もエキサイティングな技術の進展の一つです。これにより、人工知能の分野でさまざまな産業において実際の問題に対する解決策を提供する無限の可能性が開かれました。これらのモデルの魅力的な応用の一つは、個人や組織のデータソースから取得した情報をもとに、カスタムの質疑応答やチャットボットを開発することです。しかし、一般的なデータで訓練された大規模言語モデルは、常にエンドユーザーにとって特定の回答または有用な回答を提供するわけではありません。この問題を解決するために、LangChainなどのフレームワークを使用して、データに基づいた特定の回答を提供するカスタムチャットボットを開発することができます。この記事では、Streamlit Cloudでの展開を伴うカスタムQ&Aアプリケーションの構築方法について学びます。 学習目標 この記事に深く入る前に、主な学習目標を以下に概説しましょう: カスタムの質疑応答のワークフロー全体を学び、各コンポーネントの役割を理解する Q&Aアプリケーションの利点を知り、カスタムの言語モデルの微調整との比較を行う Pineconeベクトルデータベースの基礎を学び、ベクトルの保存と取得を行う OpenAIの言語モデル、LangChain、およびPineconeベクトルデータベースを使用してセマンティックサーチパイプラインを構築し、Streamlitアプリケーションを開発する この記事はData Science Blogathonの一部として公開されました。 Q&Aアプリケーションの概要 出典:ScienceSoft 質疑応答または「データに基づくチャット」は、LLMsとLangChainの広範なユースケースです。LangChainは、ユースケースに対して見つけることができるすべてのデータソースをロードするための一連のコンポーネントを提供しています。LangChainは多くのデータソースとトランスフォーマーをサポートし、ベクトルデータベースに保存するために文字列のシリーズに変換します。データがデータベースに保存されたら、リトリーバーと呼ばれるコンポーネントを使用してデータベースにクエリを送信することができます。さらに、LLMsを使用することで、ドキュメントを大量に参照することなく、チャットボットのような正確な回答を得ることができます。 LangChainは以下のデータソースをサポートしています。画像で確認できるように、様々なデータソースに接続するための120以上の統合が可能です。 出典:LangChain Docs Q&Aアプリケーションのワークフロー LangChainがサポートするデータソースについて学びました。これにより、LangChainで利用可能なコンポーネントを使用して、質疑応答パイプラインを開発することができます。以下に、ドキュメントのロード、保存、リトリーバル、LLMによる出力生成に使用されるコンポーネントを示します。 ドキュメントローダー:ユーザードキュメントをベクトル化および保存するためにロードするためのコンポーネント テキストスプリッター:これらは、ドキュメントを固定のチャンク長に変換して効率的に保存するドキュメントトランスフォーマーです ベクトル保存:入力テキストのベクトル埋め込みを保存するためのベクトルデータベースの統合 ドキュメントリトリーバル:データベースからユーザークエリに基づいてテキストを取得するためのコンポーネント。類似性検索技術を使用して取得します…
PDFとのチャット | PythonとOpenAIによるテキストの対話力の向上
イントロダクション 情報に満ちた世界で、PDFドキュメントは貴重なデータを共有および保存するための必須アイテムとなっています。しかし、PDFから洞察を抽出することは常に簡単ではありませんでした。それが「Chat with PDFs」が登場する理由です。この革新的なプロジェクトは、私たちがPDFと対話する方法を変革します。 この記事では、言語モデルライブラリ(LLM)のパワーとPyPDFのPythonライブラリの多様性を組み合わせた「Chat with PDFs」という魅力的なプロジェクトを紹介します。このユニークな融合により、PDFドキュメントと自然な会話を行うことができ、質問をすることや関連のある回答を得ることが容易になります。 学習目標 言語モデルライブラリ(LLM)についての洞察を得る。これは人間の言語パターンを理解し、意味のある応答を生成する高度なAIモデルです。 PyPDFを探求し、PDFの操作におけるテキスト抽出、マージ、分割などの機能を理解する。 言語モデルライブラリ(LLM)とPyPDFの統合により、PDFとの自然な会話を可能にする対話型チャットボットの作成方法を認識する。 この記事はData Science Blogathonの一環として公開されました。 言語モデルライブラリ(LLM)の理解 「Chat with PDFs」の中心にあるのは、言語モデルライブラリ(LLM)です。これは大量のテキストデータで訓練された高度なAIモデルです。これらは言語の専門家のような存在であり、人間の言語パターンを理解し、意味のある応答を生成することができます。 私たちのプロジェクトでは、LLMは対話型チャットボットの作成において重要な役割を果たしています。このチャットボットは、あなたの質問を処理し、PDFから必要な情報を理解することができます。PDFに隠された知識を活用して、役立つ回答と洞察を提供することができます。 PyPDFs – あなたのPDFスーパーアシスタント PyPDFは、PDFファイルとのやり取りを簡素化する多機能なPythonライブラリです。テキストの抽出、結合、分割など、さまざまな機能を利用できます。このライブラリは、PDFの処理と分析を効率化するために私たちのプロジェクトにおいて重要な役割を果たしています。 PyPDFを使用することで、PDFファイルをロードし、そのテキストを抽出することができます。これにより、効率的な処理と分析の準備が整いました。この強力なアシスタントを使用して、PDFとの対話をスムーズに行うことができます。…
「LangChainとGPT-4を使用した多言語対応のFEMAディザスターボットの研究」
この記事では、洪水や竜巻などの災害に備え、生き残るために、多言語対応のアメリカ連邦緊急事態管理庁(FEMA)の災害チャットボットを作成する方法について探求します
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.