Learn more about Search Results 14 - Page 14
- You may be interested
- 「データオデッセイの航海:2023年のトッ...
- 「監督のギレルモ・デル・トロとティム・...
- 「みんなのためのLLM:ランニングLangChai...
- 「ビートルズの新曲「今とかつて」では、A...
- AIのレンズを通じた世界の歴史
- 「InstaFlowをご紹介します:オープンソー...
- このPythonライブラリ「Imitation」は、Py...
- ISTAオーストリアとニューラルマジックの...
- なぜ便利なソフトウェアを書くのはいつも...
- 「Ken Jeeと一緒にAIの探究」
- 因果推論:準実験
- 「Amazon Bedrock のエージェント付きカス...
- 数秒で見事なデータビジュアライゼーショ...
- 「5つ星アプリを構築する:AIと自動化を利...
- 「Amazon SageMakerを使用して、Rayベース...
「Pythonで座標からサイトの距離行列を計算する」
現在の記事は、スプリント3が終わったところから旅を続けますここで、スプリント4ではモデリングから少し逸れて、ジオスペーシャル機能を持つクラスを開発しますそれは非常に...
リトリーバル オーグメンテッド ジェネレーション(RAG)推論エンジンは、CPU上でLangChainを使用しています
「リトリーバル増強生成(RAG)は広範にカバーされており、特にチャットベースのLLMへの応用については詳しく語られていますが、本記事では異なる視点からそれを見て、その分析を行うことを目指しています...」
「インド、人工知能を利用し言語の壁を解消へと向かう」
インドは人工知能(AI)を活用し、言語の壁を乗り越え、多様な人口の包括的参加を確保しようとしています。南西部の州であるカルナータカ州の村人たちは、結核のための国家初のAI駆動のチャットボットの作成に貢献することで、この取り組みに重要な役割を果たしています。このプロジェクトは、121以上の言語がそれぞれ10,000人以上によって話される国において、言語の多様性に対処することを目指しています。 言語の多様性とAIの課題 インドは、4000万以上のネイティブのカンナダ語話者を抱え、自然言語処理(NLP)でカバーされていない主要な言語を超える言語の多様性に対応するAIソリューションを提供するという重要な課題に直面しています。数億人ものインド人が言語の壁により貴重な情報や経済的な機会から排除されていることから、革新的な解決策が求められています。 AIモデルのためのデータセットの構築 テック企業のKaryaは、カンナダ語を含むさまざまなインドの言語の話者数千人を巻き込み、音声データを生成することでこの言語の革命の最前線に立っています。これらのデータセットは、マイクロソフトやGoogleなどの大手テック企業によって、教育や医療などの分野でAIモデルを向上させるために利用されています。政府のイニシアチブであるBhashiniも、クラウドソーシングプラットフォームを介してAIツール向けのオープンソースデータセットの作成に取り組んでいます。 データ収集の課題の克服 インドの言語でデータセットを作成することへの熱意はあるものの、困難な課題が存在します。多くのインドの言語は口承の伝統を持ち、限られた電子記録と広範なコードミキシングがあります。一般的ではない言語でデータを収集するには特別な努力が必要です。マイクロソフトリサーチインドのカリカ・バーリなどの専門家は、言語、文化、社会経済的なニュアンスを考慮に入れた倫理的なクラウドソーシングの重要性を強調しています。 経済価値と地域コミュニティのエンパワーメント Karyaは音声データの経済的な潜在能力に焦点を当てています。非営利団体と協力し、貧困線以下の労働者をエンパワーメントしています。最低賃金を上回る報酬を支払い、データの一部を所有させることで、Karyaは医療や農業などのコミュニティにおける経済的な価値と潜在的なAI製品開発を展望しています。 多言語の包括的参画のためのAIアプリケーション インドの人口の約11%しか英語を話せず、話し言葉や音声認識に特化したAIモデルの必要性が強調されています。Googleの支援を受けたプロジェクトVaaniやAI4BharatのJugalbandiチャットボットなどのプロジェクトは、AIが言語の壁を打破することができることを示しています。Gram Vaaniなどの社会企業は、AIを活用したチャットボットを利用して福祉給付に関する質問に応答し、地域社会をエンパワーメントしています。 他にも読む:インドのBharatGPTがGoogleの注目を集める 私たちの意見 まとめとして、インドのAIによる多言語の包括的参画への取り組みは、技術の変革力を示しています。インドは多様な人口の声を活用し、言語の壁を乗り越え、経済的な機会を創造し、コミュニティをエンパワーメントしています。AIの多様な言語への需要が高まる中で、倫理的なデータ収集とモデル開発が重要となります。インドの先駆的な取り組みは、言語の多様性に直面する国々に対してAIの包括性の可能性を示しています。
「34%高速な整数から文字列への変換アルゴリズム」
コンピュータプログラミングにおいて、与えられた整数を文字列に変換することは一般的な操作ですこれは、例えば整数を画面に表示する前や、テキスト形式の任意の場所に表示する前に行うべきです...
なぜGPUはAIに適しているのか
GPUは人工知能の希少な地球の金属、さらには金そのものとも呼ばれています。それは、今日の生成的AI時代において基盤となる存在であるためです。それは3つの技術的理由と数多くのストーリーによって説明され、それぞれの理由には多くの側面がありますが、大まかに言えば次のようなものです。 GPUは並列処理を使用します。 GPUシステムはスーパーコンピュータの高さにまでスケールアップします。 AIのためのGPUソフトウェアスタックは幅広く深いです。 その結果、GPUはCPUよりも高速かつエネルギー効率が優れており、AIのトレーニングおよび推論においても優れたパフォーマンスを提供し、高速計算を使用するさまざまなアプリケーションにおいても利益をもたらします。 スタンフォード大学のヒューマンセンタードAIグループの最近のレポートによれば、GPUのパフォーマンスは「2003年以来約7000倍」向上し、価格性能比は「5600倍」増加していると報告されています。 2023年のレポートは、GPUのパフォーマンスと価格性能の急激な上昇を捉えています。 レポートはまた、AIの進展を測定し予測する独立系の研究グループであるエポックの分析も引用しています。 「GPUは、機械学習ワークロードを高速化するための主要なコンピューティングプラットフォームであり、過去5年間のほとんど(もしくはすべて)の最大のモデルがGPU上でトレーニングされています… それにより、AIの最近の進歩に重要な貢献をしています」とエポックはサイトで述べています。 また、米国政府のためにAI技術を評価した2020年の研究も同様の結論を導いています。 「製造および運用コストを含めた場合、最先端のAIチップは生産性と運用コストをリーディングノードCPUよりも1〜3桁高いと予想されます」と述べています。 「NVIDIAのGPUは、過去10年間にAI推論のパフォーマンスを1000倍向上させました」と同社の首席科学者であるビル・デーリー氏は、半導体およびシステムエンジニアの年次集会であるHot Chipsの基調講演で述べています。 ChatGPTがニュースを広める ChatGPTは、GPUがAIにとって優れたものであることを強力に示した例です。数千のNVIDIA GPUでトレーニングされ、実行される大規模な言語モデル(LLM)は、1億人以上の人々が利用する生成的AIサービスを提供しています。 その2018年のリリース以来、AIの業界標準ベンチマークであるMLPerfは、NVIDIA GPUのトレーニングおよび推論のリーディングパフォーマンスを詳細に示しています。 例えば、NVIDIA Grace Hopper Superchipsは最新の推論テストで圧倒的な成績を収めました。そのテスト以降にリリースされたNVIDIA TensorRT-LLM推論ソフトウェアは、パフォーマンスを最大8倍向上させ、エネルギー使用量と総所有コストを5倍以上削減します。実際、NVIDIA…
アマゾンセージメーカーとAWSバッチを使用して、ゲティールはモデルトレーニングの時間を90%短縮しました
この記事は、Nafi Ahmet Turgut、Hasan Burak Yel、およびDamla ŞentürkがGetirから共同執筆したものです2015年に設立されたGetirは、超高速の食品配達の先駆者として位置づけられていますこの革新的なテクノロジー企業は、「数分で食料品を提供する」という魅力的な提案で、最終マイル配送セグメントを革命的に変革しました[...]
「デベロッパー用の15以上のAIツール(2023年12月)」
“`html GitHub Copilot GitHub Copilotは、市場をリードするAIによるコーディングアシスタントです。開発者が効率的に優れたコードを作成できるように設計され、CopilotはOpenAIのCodex言語モデルを基に動作します。このモデルは自然言語と公開コードの広範なデータベースの両方でトレーニングされており、洞察に満ちた提案を行うことができます。コードの行や関数を完全に補完するだけでなく、コメント作成やデバッグ、セキュリティチェックの支援など、開発者にとって大変貴重なツールとなっています。 Amazon CodeWhisperer AmazonのCodeWhispererは、Visual StudioやAWS Cloud9などのさまざまなIDEでリアルタイムのコーディング推奨事項を提供する、機械学習に基づくコード生成ツールです。大規模なオープンソースコードのデータセットでトレーニングされており、スニペットから完全な関数までを提案し、繰り返しのタスクを自動化し、コードの品質を向上させます。効率とセキュリティを求める開発者にとって大変便利です。 Notion AI Notionのワークスペース内で、AIアシスタントのNotionがさまざまな執筆関連のタスクをサポートします。創造性、改訂、要約などの作業を助け、メール、求人募集、ブログ投稿などの作成をスピードアップさせます。Notion AIは、ブログやリストからブレストセッションや創造的な執筆まで、幅広い執筆タスクの自動化に使用できるAIシステムです。NotionのAI生成コンテンツは、ドラッグアンドドロップのテキストエディタを使用して簡単に再構成や変換ができます。 Stepsize AI Stepsize AIは、チームの生産性を最適化するための協力ツールです。プロジェクトの履歴管理やタスク管理の役割を果たし、Slack、Jira、GitHubなどのプラットフォームと統合して更新を効率化し、コミュニケーションのミスを防ぎます。主な機能には、活動の統一した概要、質問への即時回答、堅牢なデータプライバシーコントロールが含まれます。 Mintlify Mintlifyは、お気に入りのコードエディタで直接コードのドキュメントを自動生成する時間の節約ツールです。Mintlify Writerをクリックするだけで、関数のための良く構造化された、コンテキストに即した説明を作成します。開発者やチームにとって理想的であり、複雑な関数の正確なドキュメントを生成することで効率と正確性が高く評価されています。 Pieces for Developers…
関係データベースとその応用についての深い探求
今日では、さまざまな頻繁に関連のないカテゴリに膨大な量のデータを記憶する必要性が、高い効率のデータベースの重要な意義を強調しています。データベースは、迅速なアクセス、操作、分析を可能にするために、注意深く整理、構造化、保存されたデータのコレクションです。データベースは、データウェアハウジングやオンライントランザクション処理など、さまざまなタスクに役立ち、在庫記録、顧客情報、財務記録などのデータの種類をサポートしています。 リレーショナルデータベースとは何ですか? リレーショナルデータベースは、基本的にはテーブル形式で行と列にデータが整然と構造化されたセットです。このパラダイムでは、テーブルを使用してデータを記述し、各行が特定のレコードを示し、各列が特定のプロパティまたはフィールドを定義します。 基本的には、予め定義された関係を持つデータオブジェクトのセットがリレーショナルデータベースを構成します。テーブルの列は、各々が特定のタイプのデータを含み、フィールドは属性の実際の値を含んでいます。テーブルの行は、単一のアイテムやエンティティの関連する値のグループを表します。テーブル内の各行を識別するために一意の識別子である主キーが使用されます。外部キーは、異なるテーブルの行の関係を確立するために使用されます。 リレーショナルデータベースの例 子供の夏キャンプのデータでは、テーブル内の各行が個別のキャンパーを表し、彼らの名前、年齢、参加しているアクティビティ、および一意のID番号などの情報が含まれています。 ID Name Age Activity 1 John 11 Pottery 2 Courtney 16 Photography 3 Matt 14 Cooking 4 Jasmine…
「UCバークレーの研究者たちは、スターリング-7Bを発表しました:AIフィードバックからの強化学習でトレーニングされたオープンな大規模言語モデル(LLM)です(RLAIF)」
大規模言語モデル(LLM)は、自然言語処理タスクのための人工知能モデルです。これらのモデルは膨大なデータセットでトレーニングされ、人間のようなテキストを理解し、生成することができます。彼らは人間のようなテキストを理解し、生成する能力によって自然言語処理を変革しました。その役割は、生活のあらゆる分野に及んでいます。 UCバークレーの研究者たちは、Reinforcement Learning from AI Feedback(RLAIF)によってトレーニングされたオープンな大規模言語モデル(LLM)であるStarling-7Bを開発しました。このモデルは、最近開発された報酬訓練およびポリシーチューニングパイプライン、新しいGPT-4ラベル付きランキングデータセットNectar、最先端の報酬訓練およびポリシーチューニングパイプラインの機能を活用しています。 https://starling.cs.berkeley.edu/ Starling-7Bの基盤は、GPT-4のラベル付きランキングデータセットNectarにあります。このデータセットには183,000のチャットプロンプトが含まれており、各プロンプトにはGPT-4、GPT-3.5-instruct、GPT-3.5-turbo、Mistral-7B-Instruct、およびLlama2-7Bなどのさまざまなモデルからの7つの応答があります。これにより、380万組の比較が可能となります。研究者たちは、GPT-4の順位付けを求める際に位置バイアスを軽減するためにかなりの努力を注いでおり、データセットのセクションで詳細に説明しています。 https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha 彼らは学習報酬モデルを使用してOpenchat 3.5言語モデルを洗練させ、結果は印象的であると結論づけました。アルパカ評価スコアは88.51%から91.99%に向上し、MT-Benchスコアは7.81から8.09に向上しました。これらのメトリックは、チャットボットの有用性を評価する基準として機能します。 研究者たちは、Direct Preference Optimization(DPO)を使用してZephyra-7B、Neural-Chat-7B、およびTulu-2-DPO-70Bなどの既存のオープンソースモデルとモデルを比較しました。これらのモデルはChatbot Arenaで良いパフォーマンスを発揮しましたが、MT BenchではOpenHermes 2.5やOpenchat 3.5などのトップSFTモデルと比較してRLHFの完全なポテンシャルには及びませんでした。 研究者たちは、このモデルには特定の課題があると強調しました。それは欺瞞的または操作的な手法に対して脆弱です。また、モデルは数学的または推論タスクに苦労し、出力の事実的な正確性は時々しか保証されません。彼らはまた、モデルが時折冗長になり、ジェイルブレイキングプロンプトに対しても脆弱であることを指摘しました。これらの欠点に対しては、Starling-7Bの改善に引き続き取り組んでいます。 この問題に対処するために、彼らはGPT-4をガイドとして使用するルールベースの報酬モデルを利用して、モデルをさらに洗練することを提案しました。GPT-4の技術レポートで概説されている技術を使用します。 まとめると、Starling-7Bは、LLMにおける重要な進歩を示し、AIフィードバックからの強化学習の可能性を示しています。自然言語処理の分野は、これらのモデルとコミュニティの共有知識の協力によって向上しています。研究者たちは、モデルのパフォーマンスを向上させ、制限を解決するために取り組んでいます。 この投稿は、UCバークレーの研究者によるStarling-7Bの紹介:AIフィードバックからの強化学習によってトレーニングされたオープンな大規模言語モデル(LLM)が最初に掲載されたMarkTechPostです。
メタAIがSeamlessを導入:リアルタイムで表現豊かな言語間コミュニケーションを可能にするパブリックで利用可能なAIシステム
自動音声翻訳の新機能と改善により、より多くのことが可能になり、より多くの言語をカバーし、さまざまな入力形式と連携して作業することができるようになりました。しかし、人間同士の会話と比較して、機械を介したコミュニケーションが自然に感じられる重要な機能は、現在の大規模な自動音声翻訳システムに欠けています。 新しいMeta AIの研究では、表現豊かで多言語対応の翻訳を始めから終わりまでストリーミングできる一連のモデルを提案しています。研究者は、SeamlessM4T v2を発表しました。これはSeamlessM4Tモデルのアップグレード版であり、マルチモーダルでほぼすべての言語に対応しています。この改良されたモデルは、より新しいバージョンのUnitY2フレームワークを使用しており、リソースが少ない言語データで訓練されています。SeamlessAlignの拡張により、76言語分のデータ(114,800時間分)が自動的に整列されました。SeamlessExpressiveとSeamlessStreamingという最新の2つのモデルは、SeamlessM4T v2に基づいています。SeamlessExpressiveでは、ユーザーは声の抑揚やスタイルを維持しながら翻訳できます。 Metaの研究は、スピーチの速度や休止などのプロソディのあまり探求されていない特徴に対応しながら、声のスタイルを保持することを目指しています。SeamlessStreamingに関しては、提案されたモデルはソースの発話が終了するのを待たずに低遅延のターゲット翻訳を生成します。このモデルでは、効率的な単調多重注意(EMMA)技術が使用されています。SeamlessStreamingでは、多くのソース言語とターゲット言語が同時に音声からテキストへの翻訳が行われます。 チームは、これらのモデルのプロソディ、遅延、頑健性を、新しいバージョンと更新済みの既存の自動評価尺度の組み合わせに基づいて評価しました。さらに、意味の保持、真正性、表現力にとって最も重要な品質を測定するために、既存のプロトコルを修正して人間による評価を実施しました。彼らはジェンダーバイアスの包括的な評価、マルチモーダル機械翻訳に対する既知の最初のレッドチーミング試行、深刻な有害性の検出と軽減に対する既知の最初のシステム、およびディープフェイクの影響を緩和するための聞き取りにくいローカライズされた透かし技術を実施し、彼らのモデルが責任を持って安全に使用されることを保証しました。 Seamlessは、表現豊かな言語間リアルタイムコミュニケーションを可能にする最初の公開システムです。SeamlessExpressiveとSeamlessStreamingを統合したSeamlessは、主要なコンポーネントを組み合わせています。全体的に、Seamlessはユニバーサルスピーチトランスレーターを科学小説のアイデアから現実に変えるために必要な基盤技術を提供しています。 研究者は、モデルの正確性は性別、人種、アクセントによって異なる場合があると指摘していますが、公平性の軸に沿ってアーティファクトを徹底的にテストし、可能な場合には保護策を含めています。さらなる研究は、言語カバレッジの向上とリソースの少ない言語とリソースの豊富な言語間の性能格差の縮小を目指すべきです。これにより、ユニバーサルスピーチトランスレーターを実現することができます。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.