Learn more about Search Results 購読 - Page 14
- You may be interested
- 「欧州宇宙機関は、AIが衛星ナビゲーショ...
- 「このAIニュースレターはあなたが必要と...
- 2023年の最高の6つの人工知能(AI)ETF
- 武士と鬼の世界に入りましょう:GFN Thurs...
- 「さまざまな用途に合わせて形を変える多...
- 「仕事は続けられますが、同じ仕事ではあ...
- グーグルのディープマインドリサーチは、F...
- 「Adversarial Autoencoders オートエンコ...
- 「機械学習手法を用いたJava静的解析ツー...
- 「Pythonを使って現実世界のデータにおけ...
- レコメンダーシステムにおけるPrecision@N...
- クラウドの保護:クラウドセキュリティの...
- 「プログラマーの生産性を10倍にするため...
- リアルタイムなSlackボットを生成的AIで構...
- NVIDIA NeMoを使ったスタートアップが生成...
「ChatGPTは画像を生成することができるようになりました」
OpenAIは、ChatGPTオンラインチャットボットにDALL-E画像生成器の新バージョンを統合しました
「自分の武器を選ぶ:うつ病AIコンサルタントの生存戦略」
最新のターミネーターの映画が最近公開されましたこの新しいエピソードでは、未来の人間の抵抗組織がロボットを過去に送り、OpenAIのサーバーファームを破壊し、それによって…の出現を防ぎます
「オムニバースへ:Blender 4.0 アルファリリースが新しいOpenUSDアートの時代の幕開けを切る」
編集者の注:この記事は「Into the Omniverse」というシリーズの一部であり、アーティスト、開発者、エンタープライズが最新のOpenUSDとNVIDIA Omniverseの進歩を活用してワークフローを変革する方法に焦点を当てています。 経験豊富な3Dアーティストやデジタルクリエーション愛好家にとって、人気のある3DソフトウェアBlenderのアルファ版がクリエイティブな旅を高めています。 アップデートの機能には、複雑なシェーダーネットワークの作成や強化されたアセットエクスポート機能が含まれており、BlenderとUniversal Scene Descriptionフレームワーク(OpenUSD)を使用する開発コミュニティは、3Dの風景を進化させるのに役立っています。 NVIDIAのエンジニアは、BlenderのOpenUSDの機能を向上させるために重要な役割を果たしており、これによりNVIDIA Omniverseとの使用向上ももたらされています。NVIDIA Omniverseは、OpenUSDベースのツールやアプリケーションを接続して構築するための開発プラットフォームです。 Blenderワークフローのためのユニバーサルアップグレード Blender 4.0アルファでは、さまざまなユースケースに最適化されたOpenUSDワークフローにアクセスできるようになります。 たとえば、ミュンヘンのBMWグループテクノロジーオフィスのデザインインターンであるエミリー・ボーマーは、Omniverse、Blender、Adobe Substance 3D Painterの組み合わせのパワーを活用して、コンピュータビジョンAIモデルのトレーニングに使用するリアルなOpenUSDベースのアセットを作成しています。 ボーマーは、BMWグループが公開したAIデータセットであるSORDI.aiで使用するアセットを作成するために、チームと協力しました。このデータセットには80万枚以上の写真写実的な画像が含まれています。 工業用の木箱が仮想的に「経年変化」しているクリップ。 USDはボーマーのワークフローを最適化しました。「BlenderとSubstance 3D Painterの両方でUSDサポートが見られるのは素晴らしいことです」と彼女は言います。「USDを使用して3Dアセットを作成する際、それらが配置されるシーンで予想どおりの見た目と挙動をすることを確信できます。なぜなら、物理的な特性を追加できるからです。」 オーストラリアのアニメーター、マルコ・マトセヴィッチも、Blender、Omniverse、USDの組み合わせたパワーを3Dのワークフローで活用しています。…
「初心者におすすめの副業5選(無料のコースとAIツールで始める)」
「ここには、$0から始められる5つの実証済みの副業アイデアがありますこれらの無料コースとAIツールを活用して、成功を加速させましょう」
「アマゾン、無人レジ技術を衣料品店に適用」
大手小売り企業AmazonのJust Walk Out無人レジショッピング技術の衣料品向け新バージョンは、アパレルを無線周波数識別(RFID)によって追跡します
「11/9から17/9までの週のトップ重要なコンピュータビジョンの論文」
「コンピュータビジョンは、人工知能の一分野であり、機械が視覚世界を解釈し理解することを可能にする技術です画期的な研究や技術の進展により、コンピュータビジョンは急速に進化しています…」
AWSにおける生成AIとマルチモーダルエージェント:金融市場における新たな価値を開拓するための鍵
マルチモーダルデータは、市場、経済、顧客、ニュースおよびソーシャルメディア、リスクデータを含む、金融業界の貴重な要素です金融機関はこのデータを生成し、収集し、利用して、金融業務の洞察を得たり、より良い意思決定を行ったり、パフォーマンスを向上させたりしますしかし、マルチモーダルデータには複雑さと不足に起因する課題があります
オムニヴォアに会ってください:産業デザイナーがアートとOpenUSDを組み合わせて、AIトレーニング用の3Dアセットを作成します
編集者注:この投稿は、NVIDIA OmniverseとOpenUSDを使用して3Dワークフローを加速し、仮想世界を作成する個々のクリエイターと開発者を紹介するMeet the Omnivoreシリーズの一部です。 オーストラリアのクイーンズランド工科大学(QUT)の学生であるエミリー・ボーマーは、クリエイティブな芸術または科学を追求するか迷っていました。 そして彼女は産業デザインを見つけ、研究とコーディングに没頭しながら、スケッチ、アニメーション、3Dモデリングなどの可視化ワークフローを探求することができました。 今、ボーマーはドイツ・ミュンヘンのBMW Group Technology Officeでデザインインターンとして彼女のスキルを活かしています。チームはNVIDIA Omniverse(3Dツールとアプリケーションの開発および接続のためのプラットフォーム)およびUniversal Scene Description(OpenUSDとも呼ばれる)を使用して、合成データ生成パイプラインを強化しています。 ボーマーは、BMW Group、Microsoft、およびNVIDIAが公開したSORDI.aiと呼ばれる産業用合成オブジェクト認識データセットを使用して、リアルな3Dアセットを作成しています。SORDI.aiは開発者や研究者がAIの訓練を効率化し加速するためのものです。画像の自動生成を自動化するために、チームはOmniverse Replicatorに基づいた拡張機能を開発しました。Omniverse Replicatorは、カスタムの合成データ生成ツールを作成するためのソフトウェア開発キットです。 SORDI.aiチームの一員として、ボーマーはBlenderとAdobe Substance Painterを使用して、物理的な正確さと写実性の高い3Dアセットをデザインし、合成データが効率的にAIモデルの訓練に使用できるようにしています。 ボーマーが作成するすべてのアセットは、NVIDIA Isaac Simプラットフォームで自律ロボットのテストとシミュレーションに使用されます。NVIDIA Isaac…
「科学者たちが歴史的なコードを解読し、失われた秘密を明らかにする方法」
「DECRYPTプロジェクトは、言語学者とコンピュータ科学者の共同作業で、歴史的な暗号を解読するプロセスを自動化することを目指しています」
「データを活用したリーダーシップ:アナンドSとのストーリーテリングの芸術」
Analytics Vidhyaは、業界のリーダーが自分の経験、キャリアの道程、興味深いプロジェクトなどを共有する新しいシリーズ「Leading With Data」を開始しました。シリーズの初回エピソードでは、GramenerのCEO兼最高データサイエンティストであるAnand S氏がAnalytics Vidhyaの創設者兼CEOであるKunal Jain氏にインタビューを受けました。Anandはデータサイエンスの分野でのビジョナリーであり、DataHack Summitで頻繁に講演しています。彼は取り組むエキサイティングなプロジェクトと詳細な可視化によるストーリーテリングの方法で知られています。このインタビューでは、Anandが話術にもたらす魔法と、それらの背後にある思考プロセスを垣間見ることができます。以下に、インタビューから得られたいくつかの考え深い洞察をご紹介します。 Anand S氏とのストーリーテリングの芸術 Kunal J: あなたのトークを聞くたびに、あなたがストーリーを語る方法と可視化に感動してしまいます。これらのトークを作成する際に何が行われているのか、そしてアプローチはどのようなものですか? Anand S: 私が行うトークには通常2種類あります – 一つは教えることを目的としたもので、もう一つは学ぶことを目的としたものです。学ぶためのトークでは、自分が十分に知らないものを選び、それについて学び、その後に話します。これによって、設定された締め切り内で新しいことを学ぶことができます。また、どの資料が機能し、どの資料が機能しないかを見つけることもできます。したがって、次回話すときには、何を繰り返すか、何を置き換えるか、またはストーリーに変換するかを知っています。2番目の種類のトークでは、私が過去の多くのトークでうまく機能したものを組み立て、興味深い部分だけを選んでそれらを組み合わせます。 Kunal J: 学ぶためのトークで行うことの多くが、最終的に教えるためのトークに活かされるのではないでしょうか。では、学ぶためのトークの実際の作成や調査フェーズは具体的にどのように行われますか? Anand S: 目的志向の学習の方が体系的な学習よりも効果的です。私が言うのは、本やAPIのサイトを最初から最後まで読んだ場合よりも、問題を選んで解決することの方がより多くのことを学べるということです。また、自分が興味を持っている問題を選ぶと、解決策を見つける可能性が高くなります。したがって、最初の課題は解決したい問題を見つけることです。2番目の部分は、問題を理解し、解決しようとすることであり、それは私が興味を持っているものがあるため、はるかに簡単です。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.