Learn more about Search Results 財務 - Page 14

「AIブーム:小規模ビジネスのための生成AI実践ガイド」

近年、世界は人工知能(AI)の分野で驚くべき急速な発展を目撃していますこれは単なるテクノロジートレンドではなく、技術革命であり、再構築を行っています...

ベスト5のPower BIコース(2024年)

これらのコースは、あらゆるレベルの学習者がPower BIのフルポテンシャルを引き出すための構造化されたパスを提供しています

「2023年に行うべきトップ10のウェブスクレイピングプロジェクト」

Webスクレイピングとは、ボットの助けを借りてウェブサイトからコンテンツと情報を生成するプロセスです。データベースに保存されているデータとともに、全体のHTMLコードを抽出します。Webスクレイピングは、大規模なビジネス組織にとってさまざまな用途があります。それによって、彼らのターゲット市場の正確な連絡先情報を生成することができ、それがさらにこれらの企業のリードと売上を増やすのに役立ちます。Webスクレイピングは、市場で新興のスキルと技術です。Webスクレイピングプロジェクトに取り組むことは、個人にとってスキルを磨く上で非常に有益であり、彼らが働いている会社にとっても貴重な資産となります。以下は、2023年に行う必要のあるトップ10のWebスクレイピングプロジェクトのリストです。 また読む:ソースコード付きの10の最高のデータ分析プロジェクト 求人市場分析 求職者にとって、オンラインの求人検索がどれだけ重要かを知っています。求職者の多様なニーズに対応し、求職者が簡単に求人を見つけるのを助けるWebスクレイピングプロジェクトを作成することは、非常に価値のあるツールです。 求人検索サイト(Indeed、Glassdoor、LinkedInなど)から求人情報を収集し、これらのウェブサイトからデータをスクレイピングし、焦点を当てるべきキーパラメータを把握します。求人市場分析では、求人の説明、求人の場所、必要なスキル、必要な経験、そして最も重要なのは給与などの主要なメトリックに焦点を当てます。 求人需要のトレンドを分析します。トレンドとなっている求人の場所を分析します。どの求人の役割がどのくらいの経験を必要とし、特定の求人に必要な重要なスキルは何かを調べます。たとえば、ソフトウェアエンジニアの求人をスクレイピングする場合、必要なスキルはコーディング言語の習熟度、データベースのメンテナンスのための実践などです。 これらの洞察が十分に生成され、分析された後は、求職者がプロジェクトを進める際に理解しやすいようにデータを提示することが重要です。 また読む:リサーチアナリストになるには? 説明、スキル、給与 Eコマース価格トラッカー オンラインショッピングは、年々進化しています。電子商取引のウェブサイトが提供する快適さと利便性が非常に人気を集めています。Eコマースのウェブスクレイピングプロジェクトを作成し、価格を追跡する価値のあるツールを構築することができます。AmazonやFlipkartなどのスクレイピングしたいウェブサイトを選択します。 リストされているすべての商品、その説明、およびその他の重要な情報の価格を追跡します。Webスクレイピングプロジェクトを作成し、価格がユーザーが定義したしきい値以下になった場合に生成されたリードの顧客にアラートを送信します。 さまざまなオンライン小売業者の商品の価格を比較して、最良の価格を提供し、最も効率的なWebスクレイピングプロジェクトとして機能します。 ニュースアグリゲーター ニュースを読むことに熱中し、最新の情報を得ることに興味を持っている人々は、あらゆる分野のニュースを提供するプラットフォームを探しています。ニュースアグリゲーターのWebスクレイピングプロジェクトを開発することは、情報としてだけでなく、貴重なツールとなります。Times of India、Hindustan Times、Economic Timesなどの複数のニュースウェブサイトからニュース記事を収集するWebスクレイピングツールを作成します。 収集したニュースを特定のトピックとキーワードで分類し、ユーザー向けにパーソナライズされたニュースフィードを作成します。これにより、ニュースをカテゴリ別に分類することが容易になります。 不動産市場分析 Pythonプロジェクトを使用して不動産リスト(物件の詳細、価格、場所など)を収集するWebスクレイピングプロジェクトを作成します。不動産市場分析を行うための必須ツールとなります。市場のトレンド、物件の価値上昇率、賃貸収入の可能性を分析し、効率的なシステムを作成します。異なる不動産ウェブサイトから収集したこのデータを可視化し、投資家や家購入者が情報をもとに適切な判断を下すのに役立つツールを作成します。 天気データダッシュボード 楽しい活動やビジネスディールに出かける前に、天気の更新情報を確認することは非常に重要です。PythonのWebスクレイピングプロジェクトは、天気データダッシュボードの開発の例として考えられます。異なる天気解析ツールからデータを収集し、予測や過去のデータなどの天気情報を表示するダッシュボードを作成します。天気アラートや場所に基づいたおすすめなどの機能を含め、プロジェクトをパーソナライズします。…

「Hugging FaceはLLMのための新しいGitHubです」

ハギングフェイスは、大規模言語モデル(LLM)のための「GitHub」となりつつありますハギングフェイスは、LLMの開発と展開を簡素化するツールを提供しています

アステラソフトウェアのCOO、ジェイ・ミシュラ – インタビューシリーズ

ジェイ・ミシュラは、急速に成長しているエンタープライズ向けデータソリューションの提供企業であるAstera Softwareの最高執行責任者(COO)です彼らは、ユーザーフレンドリーで高性能なデータ抽出、データ品質、データ統合、データウェアハウス、電子データ交換ソリューションのスイートを提供し、ビジネスユーザーがデータから洞察を得るギャップを埋めるお手伝いをしていますこれらのソリューションは、中堅企業からフォーチュン500まで幅広く利用されています

「Pythonを使用してPDFファイルからテキストを抽出する:包括的なガイド」

大規模言語モデル(LLM)とそれらの幅広い応用の時代において、簡単なテキストの要約や翻訳から、感情や財務報告に基づいた株式のパフォーマンスの予測まで…

「初心者におすすめの副業5選(無料のコースとAIツールで始める)」

「ここには、$0から始められる5つの実証済みの副業アイデアがありますこれらの無料コースとAIツールを活用して、成功を加速させましょう」

コーディングなしで独自のLLMをトレーニングする

イントロダクション 生成AIは、私たちがテクノロジーとコンテンツの生成方法を革新するという魅力的な分野で、世界中で大きな注目を浴びています。この記事では、大規模言語モデル(LLM)の魅力的な領域、その構成要素、クローズドソースLLMがもたらす課題、そしてオープンソースモデルの出現について探求します。さらに、h2oGPTやLLM DataStudioなどのツールやフレームワークを含むH2OのLLMエコシステムについても詳しく説明します。これらのツールとフレームワークにより、コーディングスキルをほとんど必要とせずにLLMをトレーニングすることができます。 学習目標: 大規模言語モデル(LLM)を使用した生成AIの概念と応用を理解する。 クローズドソースLLMの課題とオープンソースモデルの利点を認識する。 コーディングスキルをほとんど必要とせずにAIのトレーニングを行うためのH2OのLLMエコシステムを探索する。 LLMの構成要素:基礎モデルと微調整 LLMの詳細を掘り下げる前に、生成AIの概念を把握しましょう。予測AIが主流であり、過去のデータパターンに基づいて予測に焦点を当てる一方で、生成AIはその逆です。既存のデータセットから新しい情報を生成する能力を機械に与えます。 単一のモデルからテキストを予測・生成し、コンテンツを要約し、情報を分類するなど、さまざまなことができる機械学習モデルを想像してみてください。それが大規模言語モデル(LLM)の役割です。 LLMは、まず基礎モデルから始まる多段階のプロセスに従います。このモデルは、しばしばテラバイトまたはペタバイト単位のデータセット上でトレーニングするため、膨大なデータが必要です。この基礎モデルは、次の単語をシーケンスで予測することにより学習し、データ内のパターンを理解することを目指します。 基礎モデルが確立されたら、次のステップは微調整です。このフェーズでは、キュレートされたデータセットでの教師付き微調整を行い、モデルを所望の動作に適合させます。これには、モデルを特定のタスク(例:多肢選択、分類など)を実行できるようにトレーニングすることが含まれます。 第三のステップである人間のフィードバックに基づく強化学習により、モデルのパフォーマンスをさらに向上させます。人間のフィードバックに基づいた報酬モデルを使用することで、モデルは予測をより人間の好みに合わせて微調整します。これによりノイズが減少し、応答の品質が向上します。 このプロセスの各ステップがモデルのパフォーマンスを向上させ、不確実性を減らすのに寄与しています。なお、基礎モデル、データセット、および微調整戦略の選択は、具体的なユースケースに依存することに注意してください。 クローズドソースLLMの課題とオープンソースモデルの台頭 ChatGPT、Google BardなどのクローズドソースLLMは、効果を示していますが、いくつかの課題も抱えています。これには、データプライバシーへの懸念、カスタマイズと制御の制約、高い運用コスト、時々の利用不可などが含まれます。 組織や研究者は、よりアクセス可能でカスタマイズ可能なLLMの必要性を認識しています。そのため、彼らはオープンソースモデルの開発を始めています。これらのモデルは、コスト効果があり、特定の要件に合わせてカスタマイズすることができます。また、機密データを外部サーバーに送信することへの懸念も解消されます。 オープンソースLLMは、ユーザーにモデルのトレーニングとアルゴリズムの内部動作へのアクセス権を与えます。このオープンなエコシステムは、さまざまなアプリケーションにとって有望なソリューションとなるため、より多くの制御と透明性を提供します。 H2OのLLMエコシステム:コーディング不要のLLMトレーニング用ツールとフレームワーク 機械学習の世界で著名なH2Oは、LLM用の堅牢なエコシステムを開発しました。彼らのツールとフレームワークは、広範なコーディングの専門知識を必要とせずにLLMのトレーニングを容易にします。以下に、これらのコンポーネントのいくつかを紹介します。 h2oGPT h2oGPTは、独自のデータでトレーニングできる微調整済みのLLMです。最高の部分は何でしょうか?完全に無料で使用できます。h2oGPTを使用すると、LLMの実験を行い、商業的にも適用することができます。このオープンソースモデルを使用することで、財務上の障壁なしにLLMの機能を探索できます。 展開ツール…

「クリス・サレンス氏、CentralReachのCEO – インタビューシリーズ」

クリス・サレンズはCentralReachの最高経営責任者であり、同社を率いて、自閉症や関連する障害を持つ人々のために優れたクライアントの結果を生み出すための応用行動分析(ABA)の臨床家や教育者がソフトウェアとサービスのエンドツーエンドプラットフォームを提供するという使命を果たしています同社は新しい生成型の[...]を発表しました

「データ資産のポートフォリオを構築および管理する方法」

「データ資産(または製品)−特定のユースケースのために簡単に利用できる準備済みのデータまたは情報のセット−は、データ管理の世界で話題です特定のユースケースを特定し、構築し、...」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us