Learn more about Search Results メール - Page 14

「Amazon SageMaker Model Registry、HashiCorp Terraform、GitHub、およびJenkins CI/CDを使用して、マルチ環境設定でのパイプラインの促進を行う」

「機械学習運用(MLOps)プラットフォームを組み立てることは、人工知能(AI)と機械学習(ML)の急速に進化する状況において、データサイエンスの実験と展開のギャップをシームレスに埋めるため、モデルのパフォーマンス、セキュリティ、コンプライアンスの要件を満たす組織にとって必要不可欠です規制とコンプライアンスの要件を満たすためには、[…]」

「Azure OpenAI Studioを使用したNL2SQLシステムのセットアップ方法」

前の記事では、ユーザーのリクエストからSQLコマンドを生成するためのプロンプトのセットアップ方法を学びました今回は、Azure OpenAI Studioを使用して推論エンドポイントを作成する方法について見ていきます

(Samsung no AI to chippu gijutsu no mirai e no senken no myōyaku)

サムスンエレクトロニクスは、韓国ソウルにあるサムスンの研究開発キャンパスで開催されたサムスンAIフォーラム2023で主役となり、人工知能とコンピュータエンジニアリングの画期的な進歩を披露しました。創造的なAIと持続可能な開発を重視した2日間のカンファレンスは、業界のエキスパート、学者、研究者、学生を一堂に集め、AIと半導体技術の未来を形作る意義深い議論の場を提供しました。 創造的なAI技術の台頭 サムスンリサーチが主導するフォーラムでは、創造的なAI技術の急速な進歩について深く探求され、日常生活と仕事の両方を再定義するとされています。基調講演者であるサムスンリサーチグローバルAIセンターエグゼクティブバイスプレジデントの金大炫氏は、サムスンが創造的なAI研究で業界と学界をサポートし、協力することにコミットしていると述べました。著名なプレゼンテーションには、OpenAIのHyung Won Chung博士が大規模言語モデル(LLM)の課題と将来の軌跡について述べ、Jason Wei氏がLLMによってもたらされるパラダイムシフトを探求しました。 マルチモーダルAI技術のトレンド 韓国大学教授の徐弘錫氏は、テキストや画像などさまざまなデータタイプを同時に処理できるマルチモーダルAI技術についての洞察を共有しました。午後のセッションでは、国内の主要な大学の院生が国際AIジャーナルに掲載された論文を発表しました。ソウル大学は効率的なコード生成と検索技術を披露し、韓国科学技術院(KAIST)と延世大学のチームは、言語モデルの細かい評価能力およびテキストからイメージの生成技術を実演しました。 Samsung Gaussの公開 最後のセッションでは、伝説的な数学者カール・フリードリッヒ・ガウスにちなんで名付けられた包括的な創造的なAIモデルであるSamsung Gaussが公開されました。このモデルは、世界的な現象と知識を参照して消費者の生活を向上させることを目的としています。Samsung Gauss Languageはメールの作成やコンテンツの翻訳などのタスクを容易にし、Samsung Gauss Codeは社内ソフトウェア開発を最適化し、Samsung Gauss Imageはクリエイティブな編集や解像度向上が可能な生成画像モデルです。 Samsung Gaussの将来の応用 現在は従業員の生産性向上に活用されていますが、Samsung Gaussは様々なSamsung製品への応用拡大が予想され、新しいユーザーエクスペリエンスを約束しています。この記事では、SamsungのAI技術の開発と安全なAIの利用に焦点を当てています。AIレッドチームを通じて、SamsungはAIプロセス全体でセキュリティとプライバシーの問題に積極的に取り組んでおり、倫理的な原則に従っています。 私たちの意見 サムスンAIフォーラム2023が終了するにつれて、創造的なAIとSamsung…

「2024年に注目すべきトップ10のリモートスタッフィングエージェンシー」

2024年に仕事を革新しているトップ10の遠隔スタッフィングエージェンシーを探索し、グローバルな人材と企業をつなげる

「40歳以上の方にオススメのAIツール(2023年11月版)」

DeepSwap DeepSwapは、説得力のあるディープフェイクのビデオと画像を作成したいすべての人のためのAIベースのツールです。ビデオ、写真、ミーム、古い映画、GIFなど、あらゆるコンテンツをリフェーシングしてコンテンツを作成することは非常に簡単です。このアプリはコンテンツの制限がないため、ユーザーは任意のコンテンツの素材をアップロードすることができます。また、初めて製品の定期購読者になると、50%オフの特典があります。 Aragon Aragonを使用して驚くほど素晴らしいプロフェッショナルなヘッドショットを簡単に作成しましょう。最新のAI技術を活用して、自分自身の高品質なヘッドショットを瞬時に作成しましょう!写真スタジオの予約や着飾る手間を省略しましょう。写真の編集と修正をすばやく行い、数日後ではなくすぐに受け取りましょう。次の仕事を得るための優位性をもたらす40枚のHD写真を受け取りましょう。 AdCreative.ai AdCreative.aiを使用して、広告とソーシャルメディアのパフォーマンスを向上させましょう。究極の人工知能ソリューションであるAdCreative.aiによって、数秒で変換率の高い広告やソーシャルメディア投稿を生成する手間を省けます。AdCreative.aiを使って成功を最大化し、努力を最小化しましょう。 Hostinger AI Website Builder Hostingerは最先端の人工知能エンジンの力を借りて、すべてのウェブサイトオーナーのために最高のAIウェブサイトビルダーを作成しています。ビルダーはデザインプロセスを案内し、レイアウト、カラースキーム、コンテンツの配置を自分のニーズに合わせて提案します。あらゆるデバイスに対応したレスポンシブデザインを維持しながら、細部を自由にカスタマイズする自由を受け入れましょう。 Otter AI Otter.AIを使用することで、リアルタイムの会議の要約、検索、アクセス可能性、セキュリティを備えた共有可能な会議のノートの作成が可能になります。音声を録音し、メモを取り、自動的にスライドをキャプチャし、要約を生成する会議アシスタントを手に入れましょう。 Notion Notionは、高度なAI技術を活用してユーザーベースを拡大しようとしています。最新の機能であるNotion AIは、ノートの要約、会議でのアクションアイテムの特定、テキストの作成と修正などのタスクをサポートする堅牢な生成型AIツールです。Notion AIは、煩雑なタスクを自動化し、ユーザーに提案やテンプレートを供給することでワークフローを効率化し、ユーザーエクスペリエンスを簡素化し、改善します。 Codium AI 忙しい開発者向けに意味のあるテストを生成します。CodiumAIを使用すると、IDE内で直接提案される複雑な(および単純な)テストを取得できるため、スマートにコーディングし、価値を高め、押し込む際の自信を持つことができます。CodiumAIを使用することで、開発者はテストとコードの分析に費やす時間を節約しながら、より速くイノベーションを実現できます。 Docktopus AI Docktopusは、100以上のカスタマイズ可能なテンプレートを備えたAIパワープレゼンテーションツールで、オンラインコンテンツ作成を簡素化します。数秒でプロフェッショナルなプレゼンテーションを作成できます。…

ブレイブがLeoを紹介:ウェブページやビデオのリアルタイム要約を含むさまざまなタスクをサポートする人工知能アシスタント

利用者のプライバシーと正確なAIインタラクションに向けた大きな進歩として、名高いブラウザ開発者であるBraveが、デスクトップ版1.6のリリースと共に、その< a href=”https://www.voagi.com/create-chat-assistant-for-pdfs-and-articles-without-openai-key.html”>ネイティブAIアシスタント、レオを公開しました。その基盤モデルとして、Meta Llama 2の動力を使っているレオは、訪れたウェブページのコンテンツに基づいて利用者のクエリに応答し、AI生成コンテンツに関連する懸念事項を効果的に解決します。 今年初めにリリースされたBrave検索AIサマライザーの拡張機能であるレオは、検索バーから直接アクセスできます。8月のテストフェーズでは、Nightlyチャンネル(バージョン1.59)を通じて、数万人の開発者と利用者がブラウザとレオをダウンロードして評価し、その結果、レオは正式にBraveバージョン1.60に統合されました。 レオの特徴の一つは、利用者のプライバシーに対する取り組みです。他のチャットボットとは異なり、レオは会話を収集せず、利用者を追跡せず、無意味に反応を生成しません。代わりに、正確で関連性の高い情報を提供するために、ウェブコンテンツにのみ依存しています。 レオの無料版は、高度にセキュアなLlama 2モデルをベースにしています。これは、Metaのオープンソースモデルの特殊バリエーションです。しかしながら、Braveはレオプレミアムという有料サービスも導入しており、月額$15で提供されています。レオプレミアムには、論理的な推論とコード作成を重視したAnthropicが開発したClaude Instantモデルが搭載されています。このモデルは、より構造化された応答、指示の実行能力の向上、数学、プログラミング、多言語対応、質疑応答インタラクションの改善などを提供します。 Braveは、回答の正確さをさらに向上させるために、Anthropicのテクノロジーを統合し、Braveの検索APIを活用して最新のClaude 2モデルを訓練しています。このアプローチにより、Claude製品は検索支援生成(RAG)を達成し、より正確な回答を提供し、生成AIの幻想的傾向を抑えることができます。 安全性とプライバシーの面では、Braveは広範な対策を講じています。無料版では、レオの会話は匿名でプライベートに保たれ、対話の記録は行われません。データはモデルの訓練に使用されず、アカウントやログインは必要ありません。逆プロキシ技術により、すべての通話が匿名サーバーを経由するため、Braveは通話と利用者のIPアドレスとの関連を確立することはありません。 レオのプレミアム版を選択した利用者には、登録時にリンクできないトークンが発行され、購読の検証プロセスが保護されます。これにより、Braveは利用活動とユーザーの購入情報をリンクすることができず、完全なプライバシーが確保されます。さらに、利用者のEメールは購読の検証にのみ使用され、追跡されることはありません。 今後、Braveはプレミアム版に追加のモデルを導入する予定です。ネットワークの速度制限、対話の品質、購読者向けの独占特典なども改善されます。 現在は、Brave 1.6のデスクトップ版で利用できるレオとレオプレミアムは、今後数ヶ月でAndroidとiOSプラットフォームにも展開されます。この革新的な開発は、ブラウザ技術とAI統合の重要な進歩を示し、Braveの利用者志向およびプライバシー重視のイノベーションに対する取り組みを再確認します。 The post Braveがレオを紹介:ウェブページやビデオのリアルタイム要約など、さまざまなタスクをサポートする人工知能アシスタント appeared first on MarkTechPost。

クラウドウォッチの高度なメトリクス、ダッシュボード、アラートを使用してAWSのコストを最適化する

この記事では、Amazon CloudWatchを活用した高度なダッシュボードを使用して、AWSのコストを効率的に管理および分析する方法について深く掘り下げます

「生成型人工知能の新たな倫理的意味合い」

ジェネレーティブAIの急速な進歩は、データ、スケール、責任、著作権、そして情報の誤りのリスクに対する緊急の倫理的な保護策が必要です

「ビッグデータパイプラインのデータ品質を簡単に監視する方法」

導入 危険な水域を航行する、かなりの大きさの貨物船を指揮している自分を想像してみてください。貴重な貨物を安全に目的地に届けるのはあなたの責任です。あなたが持っている航海図の正確さ、機器の信頼性、乗組員の専門知識によって成功が決まります。誤った一つのミス、不具合、もしくはスリップアップで航海に危険が及ぶ可能性があります。 今日のデータ駆動型の世界では、データ品質が重要です。データ駆動による洞察は、戦略の形成やビジネスの未来を形作るのに役立ちます。船長のように、データエンジニアやスペシャリストは会社をデータの広大な海に導いています。ビッグデータのパイプラインは彼らの道具であり、コンパスではありません。 これらのパイプラインを介して大量のデータを輸送することは、データ処理の基盤となります。しかし、この水域には多くの隠れたリスクや不均一なデータが存在します。この記事では、ビッグデータパイプライン、データ駆動型の意思決定における役割、そしてデータ品質を維持する困難が詳細に説明されています。データスペシャリストは、経験豊富な船長と同様に、データ管理の複雑さを乗り越えて重要な洞察を安全に提供します。 学習目標 重要性を理解する:データ品質と信頼性が今日のデータ駆動型の意思決定プロセスにおいて果たす重要な役割を理解する。 課題を認識する:ビッグデータがデータ品質の維持における一意的な課題をもたらすことを特定し、その中でもデータ量、速度、バラエティに焦点を当てる。 主要なメトリクスをマスターする:完全性、一意性、正確性など包括的なデータ品質を確保するための重要なメトリクスについて学ぶ。 ツールとアラートに慣れる:データ品質チェックに使用できるオープンソースツールに慣れ、問題の迅速な解決のためのリアルタイムアラートシステムの重要性について理解する。 データ品質を監視する理由 データ駆動型の意思決定は、データそのものの質によって決まります。 欠陥のあるデータに基づいて重要なビジネスの意思決定を行うことを想像してみてください。その結果は壊滅的なものになる可能性があり、財務的な損失や評判の損失を招くかもしれません。 データ品質の監視は以下のような方法で役立ちます: 信頼性の確保:データ駆動型の意思決定は、データそのものの質によって決まります。銀行がUPI(統一支払いインターフェース)トランザクションを処理していると想像してください。もし銀行のデータ品質が損なわれていると、誤った資金の送金、場所を間違えたトランザクション、不正アクセスが発生する可能性があります。銀行券が真正であることはその価値を持つために重要であり、金融データの信頼性は正確で安全な運用のために不可欠です。データ品質の監視により、金融の意思決定やトランザクションが正確で信頼性のあるデータに基づいて行われ、金融システム全体の統合性が保たれます。 コストのかかるミスの回避:悪いデータは誤った洞察を生み出す可能性があります。金融機関が誤ったデータに基づいて誤った取引を行ったり、誤った患者レコードのデータに基づいて誤った治療を行うプロバイダーがいると、深刻な結果につながる可能性があります。データ品質の監視と確保は、そのようなリスクを緩和するのに役立ちます。データ品質が確保されていれば、顧客のターゲティングが向上し、正確な財務予測と効率的な業務が可能になります。データ品質の良し悪しは、利益と損失の差になるかもしれません。 信頼の構築:ステークホルダーはデータに依存しています。その品質を確保することでインフラストラクチャに対する信頼が強固になります。データは部門間、ステークホルダー間、ビジネス間で共有されることがよくあります。データ品質が一貫して高い場合、信頼が育まれます。 ビッグデータ品質の監視における課題 ビッグデータには独自の課題があります: データ量:その膨大なサイズのため、手動のチェックはほとんど不可能です。 データ生成の速度:高速なデータ生成に対してリアルタイムの品質チェックが重要です。 データのバラエティ:異なるデータタイプとソースは複雑さを増します。 監視する主要なメトリクス データ品質を効果的に監視するために、特定のメトリクスに焦点を当てる必要があります: 完全性:このメトリクスは、必要なデータがすべて存在することを確認します。不完全なデータは、誤った分析や意思決定につながる可能性があります。完全性を監視することで、欠落しているデータを早期に特定し、修正措置を取ることができます。データセットが包括的で完全であることを保証します。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us