Learn more about Search Results ページ - Page 14
- You may be interested
- マストゥゴにお会いしましょう:ディフュ...
- GoogleのAIにおける戦略的拡張:Anthropic...
- エンテラソリューションズの創設者兼CEO、...
- エントロピーとジニ指数入門
- 「コイントスを毎回勝つ方法」
- 生成AIの責任ある使用の緊急性
- MusicGenを再構築:MetaのAI音楽における...
- 「ディープラーニングにおける転移学習と...
- 「医療における説明可能なAIの実装の重要性」
- 「ChatGPTコードインタプリタを使用したデ...
- ゾマト感情分析
- 「ベイズフローネットワークの公開:生成...
- ‘製品およびエンジニアリングリーダーのた...
- 「グラフ注意ネットワーク論文のイラスト...
- 「GoでレストAPIを構築する:時系列データ...
「ベクターデータベースは、生成型AIソリューションの未来をどのように形作るのか?」
紹介 生成AIの急速に進化する風景において、ベクトルデータベースの重要な役割がますます明らかになってきました。本記事ではベクトルデータベースと生成AIソリューションとのダイナミックな相乗効果について探求し、これらの技術的基盤が人工知能の創造性の将来を形作っているかを紐解きます。革新的なAIソリューションの最先端にもたらすベクトルデータベースの変革的な影響を解き放つため、この強力な連携の複雑さを旅してください。 学習目標 この記事では以下のベクトルデータベースの側面を理解するのに役立ちます。 ベクトルデータベースの重要性とその主要な構成要素 従来のデータベースとのベクトルデータベースの詳細比較 応用の観点からのベクトル埋め込みの探求 Pineconeを使用したベクトルデータベースの構築 langchain LLMモデルを使用したPineconeベクトルデータベースの実装 この記事はData Science Blogathonの一部として公開されました。 ベクトルデータベースとは何ですか? ベクトルデータベースとは、空間に格納されたデータの集合の形式です。しかし、ここでは数学的な表現で格納されているため、AIモデルが入力を覚えるのに便利であり、オープンAIアプリケーションが認知検索、推奨、テキスト生成を使用してさまざまなユースケースで活用できるようになっています。データの格納と検索は「ベクトル埋め込み」と呼ばれます。また、これは数値配列形式で表されます。トラディショナルなデータベースと比べて、非常に大規模でインデックス化された機能を持つAIの観点での検索ははるかに容易です。 ベクトルデータベースの特徴 これらのベクトル埋め込みのパワーを活用し、巨大なデータセット全体でのインデックス作成と検索を実現します。 あらゆるデータ形式(画像、テキスト、データ)と互換性があります。 埋め込み技術と高度なインデックス化された機能を採用しているため、与えられた問題のデータと入力の完全なソリューションを提供できます。 ベクトルデータベースは、数百の次元を含む高次元ベクトルを通じてデータを整理します。これらは非常に迅速に構成できます。 各次元は、それが表しているデータオブジェクトの特定の特徴または属性に対応しています。 従来のデータベースとベクトルデータベースの比較 図は従来のデータベースとベクトルデータベースのハイレベルなワークフローを示しています。 フォーマルなデータベースのやり取りはSQLステートメントを通じて行われ、データは行ベースおよび表形式で格納されます。…
合成データ生成のマスタリング:応用とベストプラクティス
この記事では、合成データ生成技術とそれらのさまざまなアプリケーションでの実装、および遵守すべきベストプラクティスについて説明します
『AI規制に関するEUの予備的な合意:ChatGPTへの影響』
ヨーロッパ連合は最近、広く認識されているChatGPTを含む先進的なAIモデルの規制に関する予備的な合意を仲介しました。これは世界で初めての包括的な人工知能規制の確立に向けた大きな前進です。 AIシステムの透明性 透明性の向上を図るために、ChatGPTを含む汎用AIシステムの開発者は、基本要件に従う必要があります。これには利用可能な利用ポリシーの実施、モデルトレーニング方法論の最新情報の維持、及びトレーニングに使用されたデータの詳細な要約の提供が含まれます。また、著作権法の尊重を義務付けられています。 「システミックリスク」を有するモデルに対する追加ルール 「システミックリスク」を有すると判断されたモデルは、より厳格な規制を受けます。このリスクの判断は、モデルトレーニング時に使用される計算能力の量に依存します。特に、秒間10兆回の演算を超える任意のモデルは、このカテゴリに該当します(例えばOpenAIのGPT-4)。EUの執行機関は、データセットのサイズ、登録済みビジネスユーザー、エンドユーザーなどのさまざまな基準に基づいて他のモデルを指定する権限を持ちます。 関連記事:衝撃のニュース:ChatGPTのデータ漏洩の脆弱性 高度なモデルの行動規範 ChatGPTを含む高度なモデルは、欧州委員会がより包括的かつ持続可能な制御策を策定するまで、行動規範を採用する必要があります。不遵守の場合、AI法に準拠していることを証明する必要があります。特に、オープンソースモデルは一部の制約から免除されていますが、システミックリスクを有すると見なされた場合は免疫がないことに注意してください。 モデルに対する厳格な義務 規制フレームワークに分類されたモデルは、エネルギー消費量の報告、赤チームまたは敵対的テストの実施、潜在的なシステミックリスクの評価と緩和、および事件の報告を行う必要があります。さらに、モデルの微調整に使用された情報を開示し、開発された場合はよりエネルギー効率の高い基準に準拠する必要があります。 承認プロセスと懸念 欧州議会とEUの27か国はまだ暫定的な合意を承認していません。一方で、フランスやドイツなどの国々から懸念が表明されています。懸念は、ミストラルAI&Aleph Alphaなどの企業によって象徴される欧州のAI競合他社の抑制リスクに焦点を当てています。フランスとドイツは特に、過度の規制がグローバルなAIの景気へのイノベーションと競争力に悪影響を及ぼすことを懸念しています。 関連記事:欧州のAI巨大MISTRAL AIが3億8500万ユーロを調達 私たちの意見 AI規制の複雑な領域を航海する中で、EUのアプローチはイノベーションの促進と潜在的なリスクへの保護の間の微妙なバランスを求めています。提案が承認を待っている間、一部の加盟国から懸念が唱えられています。これはAI分野の統治の将来を描く上で、AI開発者の願望と社会的安全性の必要性をバランスさせる重要な課題を示しています。
人間に戻る:AIの道:コードからぬいぐるみまでの旅
人工知能(AI)の急速に進化する風景の中で、私たちはアプローチの転換を求める分岐点に立っています。特にシリコンバレーを中心に、テック業界では既存の製品にAIを統合し、増分のイノベーションを生み出す傾向があります。この戦略は、AIに対する一般の人々の理解を深め、抵抗を減らすという点で重要な役割を果たしてきました。しかし、このアプローチは頭打ちになりつつあります。AIの革命的な可能性を実現するためには、人間の根本的なニーズと行動に戻り、AIアプリケーションのための新しい革新的な「チャネル」を築かなければなりません。AIは感性的にならなければなりません! その重要性を強調するため、著名な作家でありデザイン思考家であるドン・ノーマンは、彼の画期的な著書「日常のデザイン」で、製品デザインを人間の本能と反応に整合させることの重要性を強調しています。この原則は、AIアプリケーションにおいても重要です。既存の製品にAIを埋め込むだけではなく、基本的な人間の経験とニーズを理解し、活用することが重要です。 これらの人間中心のデザインを発見するための効果的な手法の一つは、「デザインフィクション」です。この手法は、未来に自分自身を投影して、SF要素や弱いシグナルを活用して新たな使い方を概念化することを意味します。将来のシナリオを想像し、逆算して現在の製品に至るロードマップを作成することで、革新的な使い方を見つけることができます。 AIの変革的な性質を持つためには、持続可能な統合のための新たなパラダイムが必要です。そのためには、ある程度の科学的な洞察力が必要です。DeepMind、Google Research、FAIR、OpenAI、およびNvidiaなどの組織は、科学的な進歩によってこれに足場を築いています。ChatGPTなどの初期のプロトタイプは驚きと可能性を提供しました。次のステップでは、AIを現行の製品に埋め込んで利用性を向上させることが求められます。しかし、真に革新的な使い方を見つけるためには、技術の可能性に合ったものを特定することが重要です。 iPhoneのタッチスクリーンやApp Storeによってもたらされた革命を考えてみてください。スティーブ・ジョブズは、ブラックベリーのキーボードではなくタッチスクリーンを提唱したのは単なる姿勢ではなく、ユーザーの好みとニーズを深く理解していたからです。このアプローチは、最近OpenAIとの議論で示唆されたJony Iveの考え方に似ています。AIにおける同様の画期的な開発を暗示しています。 これらの革新的な使い方を特定するために、私たちは現行の製品にとどまるのではなく、SFや映画の世界に飛び込んでみるべきです。作家たちはそこで未来を予見しています。その一つの良い例は映画やテレビシリーズ「リミットレス」です。NZTという薬を通して人間の能力を高めるという中心テーマは、AIの増強パラダイムと共鳴します。主人公のエディ・モラやブライアン・フィンチは、注意を分散させず、後で細部を思い出すことを示しています。このコンセプトは、深い人類学的なニーズと増強パラダイムに合致します。WhatsAppの会話に集中していたとき、チームメイトが今朝コーヒーマシンであなたに話したことを思い出せたら、それはどんなに素晴らしいことでしょうか。 Rewind AIなどの企業も同様のコンセプトを探求しています。Rewind AIは、基本的なフォトエディティングやチャットボットを超える革命的な技術です。ユーザーは、生活の瞬間を卓越した明瞭さと詳細さで再訪・思い出すことができます。それを物語的な「リミットレス」の薬のようなデジタル版と考えてください。Rewind AIを使用すると、ユーザーは写真アルバムをめくるように、過去の経験を手軽にアクセスして再生することができます。さらに、Rewind AIは、スクリーンから離れているときでも、日常生活を記憶する力を与えるウェアラブル技術の開発も模索しています。最近リリースされたGemini Nanoのような軽量AIモデルのポテンシャルも強調されています。このAI技術の最新進歩は、コンパクトで効率的かつ驚くべきパワフルさを備えた、機械学習の未来を具現化しています。このような軽量でありながら強力なAIモデルを受け入れることで、AIが単なる臨時のアシスタントでなく、私たちの日常生活の一部として完全かつなめらかに統合された世界に一歩近づくのです。 結論として、AIの未来は既存の製品を単に強化するだけでなく、私たちの最も深い人間の本能とニーズと共感する新しい製品を作り出すことにあります。デザインフィクションからインスピレーションを得て、人間の行動の本質を理解することにより、革新的でありながら自然な傾向と欲望と深い共鳴を持つAIアプリケーションを開発することができます。私たちがこの旅に乗り出すにあたり、先見の明のあるデザイナーとAIの専門家との協力は、この変革的なテクノロジーの真の可能性を引き出し、AIが単なるツールではなく、私たちの人間の体験の拡張となる未来への道を開きます。 この記事は「人間に戻る:AIの旅、コードから愛撫へ」がMarkTechPostで最初に掲載されました。
「エキスパートのミックスについて解説」
ミクストラル8x7Bのリリース(発表、モデルカード)により、トランスフォーマのクラスがオープンAIコミュニティで最も話題となっています。それがエキスパートの混合(Mixture of Experts、略してMoEs)です。このブログ記事では、MoEsの構成要素、トレーニング方法、および推論時の考慮事項について見ていきます。 さあ、深く掘り下げてみましょう! 目次 ミクストラルとは何ですか? MoEsの簡潔な歴史 スパース性とは何ですか? MoEsのトークンのロードバランシング MoEsとトランスフォーマ スイッチトランスフォーマ ルータZ損失によるトレーニングの安定化 エキスパートは何を学ぶのですか? エキスパートの数をスケーリングすると事前トレーニングにどのような影響を与えるのですか? MoEsの微調整 スパースMoEsと密なモデルの使用時期はいつですか? MoEsを効果的に活用するために エキスパート並列処理 能力係数と通信コスト サービングテクニック 効率的なトレーニング オープンソースのMoEs ワークのエキサイティングな方向性 いくつかのリソース…
ハグ顔(Hugging Face)での最新技術の組み合わせであるミクストラル(Mixtral)へようこそ
Mixtral 8x7bは、ミストラルが本日リリースした刺激的な大型言語モデルで、オープンアクセスモデルの最新技術基準を上回り、多くのベンチマークでGPT-3.5を凌駕しています。私たちは、MixtralをHugging Faceエコシステムに包括的に統合してのローンチをサポートすることに興奮しています🔥! 本日リリースされる機能と統合には以下があります: ハブ上のモデル、モデルカードとライセンス(Apache 2.0) 🤗 Transformers統合 推論エンドポイントとの統合 高速で効率的な本番推論のためのテキスト生成推論との統合 🤗 TRLを使用した単一のGPUでのMixtralの微調整の例 目次 Mixtral 8x7bとは何ですか 名前について プロンプト形式 分からないこと デモ 推論 🤗 Transformersを使用する テキスト生成推論を使用する 🤗…
メタAIは、リアルタイムに高品質の再照明可能なガウシアンコーデックアバターを構築するための人工知能手法「Relightable Gaussian Codec Avatars」を紹介しますこれにより、新しい表情を生成するためにアニメーションさせることができるハイフィデリティのヘッドアバターが作成されます
“`html 画期的な進展を遂げたMeta AIの研究者たちは、ダイナミックな3Dヘッドアバターの高精細なリライティングを実現するという長年の課題に取り組みました。従来の方法では、特にリアルタイムの応用において効率性が重要となる場合に、表情の複雑な細部を捉えることができるようになるまでに時間がかかることがよくあります。Meta AIの研究チームは、この課題に対処すべく、「リライト可能ガウシアンコーデックアバター」という方法を発表し、アバターのリアリズムの領域を再定義する用意のある手法を作り出しました。 研究チームが取り組んだ中核的な問題は、ダイナミックな顔のシーケンスにおいて、髪の毛や毛穴などのサブミリメートルの詳細をより明確に捉える必要があるということです。目、肌、髪などの人間の頭部の異質な材料を効率的にモデル化しながら、すべて周波数の反射に対応するというのは困難な課題です。既存の手法の制約は、リアリズムとリアルタイムのパフォーマンスをシームレスに組み合わせる革新的な解決策が必要とされています。 リライト可能なアバターに関する既存のアプローチは、リアルタイムのパフォーマンスと忠実度のトレードオフに悩まされてきました。リアルタイムのアプリケーションにおいて、動的な顔の詳細を捉えることができるメソッドが必要とされてきたのです。Meta AIの研究チームは、この課題に目をつけ、「リライト可能ガウシアンコーデックアバター」を革新的な解決策として導入しました。 Meta AIの手法は、3Dガウシアンに基づくジオメトリモデルを導入し、サブミリメートルの精度まで拡張する精密さを提供しています。これは、ダイナミックな顔のシーケンスを捉えるための大幅な進歩であり、髪の毛や毛穴の微妙なニュアンスを含め、アバターが生命的な詳細を示すことを保証します。この革新的な手法の重要な要素であるリライト可能な外観モデルは、学習可能な輝度伝達に基づいています。 https://arxiv.org/abs/2312.03704 これらのアバターの優れた点は、アバターの構築における包括的なアプローチにあります。3Dガウシアンによってパラメータ化されたジオメトリモデルは、アバターのバックボーンを形成し、ガウシアンスプラッティング技術を使用した効率的なレンダリングを可能にします。学習可能な輝度伝達によって駆動される外観モデルは、拡散球面調和関数と反射球面ガウシアンを組み合わせています。この組み合わせにより、アバターは点光源と連続的な照明によるリアルタイムのリライティングを実現できます。 これらの技術的側面を超えて、この手法は表情、視線、ビュー、照明に対する切り離し可能な制御を紹介しています。アバターは、潜在的な表情コード、視線情報、および目標視野方向を利用してダイナミックにアニメーション化することができます。この制御のレベルは、アバターアニメーションにおける重要な進展であり、繊細でインタラクティブなユーザーエクスペリエンスを提供します。 これらのアバターは、単なる理論的な進展ではありません。その手法によって、ヘッドマウントカメラからのライブビデオによるアニメーションが実証されています。この能力により、リアルタイムのビデオ入力がアバターをシームレスに動かすことで、ダイナミックでインタラクティブなコンテンツを作り出すことができます。 総括すると、Meta AIの「リライト可能ガウシアンコーデックアバター」は、複雑な課題に対処するためのイノベーションの力を示すものです。3Dガウシアンに基づくジオメトリモデルと革新的な学習可能な輝度伝達の外観モデルを組み合わせることで、研究チームは既存の手法の制約を超え、アバターのリアリズムに新たな基準を打ち立てました。 “`
「NVIDIAがゲームチェンジャーとマーケットメーカーへの投資でAI革命を推進する方法」
偉大な企業は物語によって繁栄します。NVIDIAのベンチャーキャピタル担当であるシド・サイディックは、これをよく知っています。 サイディックは、最初の仕事のひとつで、投資家のミーティングからプレゼン資料を運び回り、トレーラーでの仕事中に、ドアが開くと「揺れる」トレーラーで、スタートアップのCEOとマネジメントチームが物語を伝えるのを手伝いました。 そのCEOはJensen Huangであり、スタートアップはNVIDIAでした。 サイディックは、投資家と起業家として働いた経験から、顧客やパートナー、従業員や投資家など、会社の物語を早い段階で共有するために適切な人々を見つけることがどれほど重要かを知っています。 この原則こそが、NVIDIAが次世代イノベーションを支援するために取り組んでいる多面的なアプローチの基盤です。この戦略は、NVIDIAの企業開発責任者であるヴィシャル・バグワティも支持しています。 この取り組みは、今年に入ってこれまでに2ダース以上の投資を果たしました。AIと加速コンピューティングのイノベーションのペースが加速するにつれ、さらに加速しています。 AIエコシステムを支援するNVIDIAの三本の戦略 NVIDIAがエコシステムを投資する方法は3つあります。まず、バグワティが監督するNVIDIAの企業投資によるもの。次に、サイディックが率いる私たちのベンチャーキャピタル部門であるNVenturesによるもの。そして最後に、ベンチャーキャピタルとスタートアップを結び付ける私たちのNVIDIA Inceptionです。 PwCによれば、AIだけで2030年までに世界経済に15兆ドル以上の寄与ができる可能性があります。したがって、現在AIと加速コンピューティングに取り組んでいる場合、NVIDIAは手助けする準備ができています。あらゆる業界の開発者が加速コンピューティングアプリケーションを作成しています。そして、まだ始まったばかりです。 その結果、AIの物語を日々進化させている企業のコレクションが生まれました。Cohere、CoreWeave、Hugging Face、Inflection、Inceptiveなどが含まれます。私たちは彼らと一緒にいます。 「NVIDIAと提携することはゲームチェンジャーです」とMachina LabsのCEOであるEd Mehrは言いました。 「彼らの類まれな専門知識が、私たちのAIとシミュレーション能力を飛躍的に向上させます」。 企業投資:エコシステムの成長 NVIDIAの企業投資部門は戦略的な協力に焦点を当てています。これらのパートナーシップは共同イノベーションを促進し、NVIDIAプラットフォームを強化し、エコシステムを拡大します。2023年の始め以来、14件の投資に関する発表が行われています。 これらのターゲット企業には、チップ間の光接続に特化したAyar Labsや、先進的なAIモデルのハブであるHugging Faceなどがあります。 ポートフォリオには、次世代のエンタープライズソリューションも含まれています。Databricksは、機械学習のための業界をリードするデータプラットフォームを提供しており、CohereはAIを通じた企業自動化を提供しています。他の注目すべき企業にはRecursion、Kore.ai、Utilidataなどがあり、それぞれが薬物発見、会話型AI、スマート電力グリッドのユニークなソリューションを提供しています。 消費者サービスも投資の焦点です。Inflectionは、クリエイティブ表現のためのパーソナルAIを作り上げており、Runwayは生成AIを通じたアートと創造性のプラットフォームとして機能しています。…
このAIサブカルチャーのモットーは、「行く、行く、行く」
「効果的なアクセラレーショニズム」として知られる風変わりなプロテクノロジー運動は、パワフルなAIの束縛を解き放ち、その過程でパーティーを楽しみたいと願っています
「スピークAI転写ソフトウェアのレビュー(2023年12月)」
この詳細なSpeak AIレビューで、Speak AIについての真実を発見してくださいそれは最も優れたAI転写ソフトウェアですか?この記事で確認してください!
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.