Learn more about Search Results いくつかの - Page 14
- You may be interested
- AWS Marketplace上のHugging Faceプラット...
- 50以上の機械学習面接(インタビュアーと...
- 魚の養殖スタートアップ、AIを投入して水...
- ヒットパウ写真エンハンサーレビュー:最...
- Falcon-7Bの本番環境への展開
- ODSC West 2023の基調講演:責任ある生成A...
- 「脳と体をモニターするイヤホン」
- 「SynthIDを使ったAI生成画像の識別」
- 「Pythonにおける断続的な時系列の予測」
- NLPスーパーパワーを活用する:ステップバ...
- ホワイトキャッスルへようこそそれに人と...
- このAIニュースレターは、あなたが必要な...
- AIパワードテックカンパニーが、食品小売...
- MDauditは、AIを使用して医療関係者の収益...
- Pythonでの機械学習のためのテキストの前...
2024年のインフラストラクチャー予測
企業はAIの導入の転換点を見ているランサムウェアの脅威が罰則と衝突し、ハイブリッドクラウドアーキテクチャが主流となり、インフラのアップグレードが重要です
基本に戻るボーナスウィーク:クラウドへの展開
「VoAGIの「基礎に戻る」シリーズへようこそ今週はボーナス週間で、クラウドへの展開について学んでいきます」
「PowerBIでのデータ操作のためのPower Queryの使用」
はじめに Power Queryは、PowerBIの強力なデータ変換および操作ツールであり、ユーザーがさまざまなソースからデータを抽出、変換、ロードすることを可能にします。コーディングの必要なく、複雑なデータ変換を行うためのユーザーフレンドリーなインターフェースを提供しています。この記事では、Power QueryのPowerBIでの利点を探り、データ操作に使用する方法を教えます。 PowerBIでのPower Queryの利点 Power Queryは、PowerBIでのデータ操作に以下の利点を提供します。 データの抽出:Power Queryは、データベース、Excelファイル、Webページ、APIなど、さまざまなデータソースに接続することを可能にします。これにより、複数のソースからデータを抽出し、分析のための単一のデータセットに結合することができます。 データの変換:Power Queryは、データのクリーンアップ、フィルタリング、ソート、および変形のための多様な変換オプションを提供します。重複の削除、列の分割と結合、クエリのマージと追加、およびデータのピボットおよびアンピボットなどの操作を行うことができます。 データのロード:Power QueryはPowerBIとシームレスに統合されており、変換されたデータをレポートやダッシュボードのデータモデルにロードすることができます。また、データの更新とリフレッシュもサポートしており、レポートが常に最新の状態を保つことができます。 Power Queryの使い方 Power QueryはPowerBIに組み込まれた機能ですので、別個のインストールは必要ありません。単にPowerBIを開き、ホームタブの「データの取得」オプションに移動してPower Queryにアクセスします。 PowerBIでPower Queryを使用するためには、次の手順に従ってください: データソースへの接続:Power Queryは、Excelファイル、データベース、Webページ、APIなど、さまざまなデータソースをサポートしています。データソースに接続するには、「データの取得」メニューから適切なオプションを選択し、接続を確立するためのプロンプトに従ってください。 Power…
「OpenAIやLM Studioに頼らずにAutoGenを使用する方法」
イントロダクション OpenAIやLMスタジオに頼らずに、あなた自身のAIチームを作成する準備はできていますか?もはや銀行を荒らすことも、アプリをダウンロードすることもありません。llama-cpp-pythonの設定から、autogenフレームワークのヘルプを借りてローカルLLMのパワーを探求するまで。OpenAI APIに依存せず、Autogenのフルポテンシャルを引き出す準備をしましょう。 学習目標 詳細に入る前に、この記事の主な学習目標を概説しましょう: さまざまなAIライブラリとツールを評価・比較する方法を学ぶ。 llama-cpp-pythonがOpenAI APIの代替として提供できる方法を探索する。 2つの現実世界の使用例で獲得した知識を適用する: アルゴリズムメンターチームの構築と金融チャート生成の自動化。 AutoGenの改善されたユーザーエクスペリエンスを探索し、統合されたIPythonを通じて即時のコード実行結果を得る。 この記事はData Science Blogathonの一環として公開されました。 ツール紹介: llama-cpp-python、AutoGen、およびローカルLLM しかし、このテックツールキットの特別な点は何でしょうか? llama-cpp-pythonは、LLMAのような有名なモデルを含めて、ローカルでLLMを実行するためのゲートウェイです。コンピュータ上にAIのスーパースターがいるようなもので、さまざまなBLASバックエンドのサポートにより、速度は驚異的です! AutoGen AutoGenは、基盤モデルを使用するための高レベルな抽象化として機能する統一されたマルチエージェント会話フレームワークです。LLM、ツール、および人間の参加者を統合し、自動化されたチャットを通じて能力のある、カスタマイズ可能で会話形式のエージェントを結合します。エージェント同士が自律的にコミュニケーションして共同作業を行うことができ、複雑なタスクを効率的に進めることやワークフローを自動化することが可能です。 もしAutoGenの機能をより深く探求し、戦略的なAIチームビルディングをどのように支援するかを調べることに興味があるなら、当社の専用ブログ「Strategic AI Team Building…
アルゴリズムの効率をマスターする
イントロダクション テクノロジーの世界では、アルゴリズムの効率性を理解することはまるで超能力を持っているかのようです。アルゴリズムの効率性はコンピュータ科学者だけでなく、コードを書くすべての人にとって重要なものです。このガイドでは、アルゴリズムの効率性とその計測方法について紹介します。また、わかりやすいコードの例を使ってアルゴリズムの分析と最適化の方法も学びます。このガイドを終えるころには、効率的で反応性の高いプログラムを書くための準備が整っているでしょう。 アルゴリズムの効率性とは何ですか? アルゴリズムの効率性とは、少ないリソースで多くのことをすることを意味します。つまり、最もリソース効率の良い方法でタスクを達成することです。効率的なアルゴリズムはソフトウェアやシステムの基盤となり、より高速で実行コストが低く、スケーラブルなものにします。 アルゴリズムの効率性を評価する上で重要な要素は時間計算量と空間計算量です。時間計算量はアルゴリズムの実行時間を測定し、空間計算量は使用するメモリを評価します。 アルゴリズムの効率性は異なる記法を使ってテストされます。これについてもう少し詳しく理解しましょう。 アルゴリズムの記法とは何ですか? アルゴリズムの記法は、アルゴリズムを体系的に記述するために使用される象徴的な表現や規則です。これには、特定の記号、構造、図表、および他の図形やテキスト形式が含まれます。これらの記法によって、ステップバイステップのロジックやアルゴリズムのプロセスを明瞭で標準化された方法で伝えることができます。 アルゴリズムの記法の例としては、疑似コード、フローチャート、構造化英語、UMLダイアグラム、Big O、およびコントロールテーブルがあります。これらの記法によってアルゴリズムのパフォーマンスを分析したり比較したりすることが容易になります。効率的なアルゴリズムとは、時間やメモリなどのリソースを最小限に使用してタスクを達成するアルゴリズムのことです。 主要なアルゴリズムの記法 アルゴリズムの効率性を測定する際に、主要な記法として以下の3つが挙げられます: Big O、Theta、Omegaです。それぞれの記法はアルゴリズムの振る舞いに異なる洞察を提供します。例を使ってそれぞれを簡単に紹介しましょう。 特定の要素を配列内で検索したいとします。以下にそのためのコードを示します: def search_element(arr, target):for num in arr:if num == target:return…
データのアルトリズム:企業エンジンのデジタル燃料
デジタル経済は、知識と情報への均等で迅速かつ無料のアクセスという素晴らしい約束に基づいて構築されてきましたそれから長い時間が経ちましたそして約束された平等の代わりに、私たちがするのは...
「たぬき+GPT4を使用して、20分で顧客サポートボットを作成しましょう」
要点 このワークフローは、顧客のフィードバックメッセージに応答し、それらをGPT4 + タヌキ(オープンソース)を使用して優先されたサポートチケットに解析しますこれは誰にとって役立ちますか? 何人でも興味を持っている人は、...
メタAIが効率的なSAMを紹介します:パラメータ数が20分の1でランタイムが20倍速いSAMの弟です
ビジョンにおいて、Segment Anything Model (SAM) は、ゼロショットオブジェクト提案生成、ゼロショットインスタンスセグメンテーション、エッジ検出など、数多くの画像セグメンテーションタスクで優れた成果を上げています。 SAMのビジョントランスフォーマ (ViT) モデルの基盤となるのは、SA-1Bビジュアルデータセットです。このデータセットには、1100万枚の写真から10億のマスクが含まれており、与えられた画像内の任意のアイテムをセグメント化することが可能です。Segment Anythingの能力を持つことから、SAMはビジョンにおける基盤モデルに留まらず、ビジョンの外でも活用されています。 これらの利点にもかかわらず、特にViT-Hのような画像エンコーダのようなSAMアーキテクチャの高いコストは、効率の面での実用上の採用を妨げるものとなっています。 この困難に対応するため、最近のいくつかの研究論文では、SAMをプロンプトベースのインスタンスセグメンテーションに利用する際の金銭的負担を軽減する解決策が提案されています。 例えば、既存のデフォルトのViT-H画像エンコーダの専門知識の恩恵を、小さなViT画像エンコーダにも与えることができます。リアルタイムのCNNベースの設計は、Segment Anythingの処理コストを削減することができます。ViT-Tiny/-Smallのような十分にトレーニングされた軽量なViT画像エンコーダを、パフォーマンスを犠牲にすることなく利用することがこの論文では提案されています。 新しいメタAIの研究では、SAMを活用したマスク画像関連の軽量な事前学習されたViTバックボーンを作成しています。このために、研究者たちはSAMモデルで有名なMAE事前学習手法を利用して高品質の事前学習済みViTエンコーダーを確立しました。 具体的には、提案されたSAMIは、イメージパッチではなくSAMのViT-Hから特徴を再構築するためにマスク画像モデルをトレーニングし、SAMエンコーダであるViT-Hを使用して特徴埋め込みを提供します。これにより、画像のカテゴリ分類、オブジェクト識別、セグメンテーションなどの後続操作に利用できる一般的なViTバックボーンが生成されます。その後、事前学習済みの軽量エンコーダをSAMデコーダを利用してセグメンテーションやその他のタスクに適用するように調整されます。 チームはまた、現実世界での実装における品質と効率のトレードオフを持つ軽量なSAMモデルであるEfficientSAMを提供しています。 チームは、224×224の解像度を利用してImageNet上でモデルを再構成損失を用いて事前学習し、その後、対象のタスクで監督データを利用して微調整して、マスク画像事前学習の転移学習の文脈での戦略を評価しました。SAMIによって一般化可能な軽量エンコーダを学習することができます。SAMI事前学習を行ったImageNet-1Kでトレーニングされたモデルは、ViT-Tiny/-Small/-Baseのような一般化能力において優れた結果を示しました。ImageNet-1Kで100エポックで微調整された場合、ViT-Smallモデルでは82.7%のトップ1の正答率を達成し、その性能は他の最先端の画像事前学習ベースラインよりも優れています。オブジェクト検出、インスタンスセグメンテーション、意味セグメンテーションの領域では、チームは事前学習モデルをさらに改良しました。 既存の事前学習ベースラインと比較して、彼らの戦略はこれらのタスクにおいてそれらを上回ります。さらに、小さなモデルでも大幅な改善が見られます。さらに、Segment Anythingのチャレンジもモデルの評価に利用されます。このモデルは、COCO/LVISのゼロショットインスタンスセグメンテーションにおいて、FastSAMや現在の軽量SAMアルゴリズムよりも4.1AP/5.2APの改善が見られます。
ランタイム中に拡散モデルを動的に圧縮するためのシンプルで効果的な加速アルゴリズムDeepCacheを紹介します
人工知能(AI)とディープラーニングの進歩により、人間とコンピューターの相互作用は大きく変革されました。拡散モデルの導入により、生成モデリングはテキスト生成、画像生成、音声合成、映像制作などのさまざまなアプリケーションで驚異的な能力を示しています。 拡散モデルは優れた性能を示しているものの、これらのモデルは通常、モデルサイズの大きさと順次のノイズ除去手順に関連する高い計算コストがあります。これらのモデルは非常に遅い推論速度を持っており、モデルの剪定、蒸留、量子化などの手法を使用してステップごとのモデル推論のオーバーヘッドを低下させるなど、研究者によって様々な取り組みが行われています。 従来の拡散モデルの圧縮方法では、大量の再学習が必要であり、これには実用的および財務的な困難が伴います。この問題を克服するため、研究者チームはディープキャッシュと呼ばれる新しい学習フリーパラダイムを導入し、拡散を加速するために拡散モデルのアーキテクチャを最適化しました。 ディープキャッシュは、拡散モデルの連続したノイズ除去段階に固有の時間的冗長性を利用しています。この冗長性の理由は、いくつかの特徴が連続したノイズ除去ステップで繰り返されるためです。これにより、これらの特性のキャッシングと取り出しの方法を導入することで、重複計算を大幅に削減しています。チームは、このアプローチがU-Netの特性に基づいていることを共有しており、これにより高レベルの特徴を効果的かつ効率的に更新しながら、低レベルの特徴を再利用することができます。 ディープキャッシュの創造的なアプローチにより、Stable Diffusion v1.5に対して2.3倍の高速化が実現されており、CLIPスコアはわずか0.05の低下となっています。また、LDM-4-Gに対しては素晴らしい4.1倍の高速化が実現されており、ただしImageNetではFIDが0.22の低下となっています。 チームはDeepCacheを評価し、実験的な比較で現在の剪定および蒸留手法よりも優れたパフォーマンスを示すことを確認しました。また、既存のサンプリング手法とも互換性があることが示されています。DDIMやPLMSと同様の、またはわずかに優れた性能を示すことが報告されており、同時に生成される出力の品質を損なうことなく、効率を最大限に引き出しています。 研究者は、主な貢献を以下のようにまとめています。 DeepCacheは現在の高速サンプラーとうまく機能し、同様またはより良い生成能力を実現する可能性を示しています。 実行時に拡散モデルを動的に圧縮することで、画像生成の速度を改善しますが、追加のトレーニングは必要ありません。 キャッシュ可能な特徴を使用することで、高レベルの特徴における時間的一貫性を利用して、重複計算を削減します。 拡張キャッシング間隔に対するカスタマイズされた技術を導入することで、DeepCacheは特徴のキャッシュの柔軟性を向上させます。 DDPM、LDM、Stable Diffusionモデルにおいて、CIFAR、LSUN-Bedroom/Churches、ImageNet、COCO2017、PartiPromptでテストした場合、DeepCacheはより効果的な結果を示します。 再学習が必要な剪定および蒸留アルゴリズムよりも優れたパフォーマンスを発揮するDeepCacheは、高い効果性を維持します。 結論として、DeepCacheは従来の圧縮技術の代替手段として、拡散モデルのアクセラレータとして大いに期待されます。
次元性の祝福?!(パート1)
「これらの問題の1つまたは複数について、慎重に選ばれた科学者のグループが夏に一緒に取り組めば、重要な進展が期待できると私たちは考えています」と提案は述べましたジョンはまだ知りませんでしたが...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.