Learn more about Search Results 22 - Page 149

何が合成データとは?その種類、機械学習とプライバシーにおける利用例及び応用について

データサイエンスと機械学習の分野は、毎日成長しています。新しいモデルやアルゴリズムが提案されるにつれて、これらの新しいアルゴリズムとモデルには、トレーニングやテストに膨大なデータが必要となります。ディープラーニングモデルは今日では非常に人気があり、これらのモデルもデータを大量に必要とします。異なる問題文脈の大量のデータを取得することは、非常に面倒で時間がかかり、コストがかかります。データは現実のシナリオから収集されるため、セキュリティの責任とプライバシーの懸念が高まります。データの大部分はプライバシー法や規制によって保護されており、組織間や場合によっては同一組織の異なる部門間でのデータ共有や移動を妨げ、実験や製品のテストを遅らせる原因となります。それでは、この問題をどのように解決できるでしょうか?どのようにして、誰かのプライバシーに関する懸念を引き起こすことなく、データをよりアクセスしやすくオープンにすることができるのでしょうか?  この問題の解決策は、合成データ (Synthetic data)と呼ばれるものです。 では、合成データとは何でしょうか? 合成データとは、人工的またはアルゴリズム的に生成され、実際のデータの基本的な構造と特性に近いものです。合成データが良ければ、実際のデータと区別がつかないほどです。 合成データの種類は何種類あるのでしょうか? この質問の答えは非常にオープンエンドで、データは多様な形をとることができますが、主に以下のようなものがあります。 テキストデータ 音声またはビジュアルデータ (たとえば画像、動画、音声) 表形式のデータ 機械学習における合成データの利用例 ここでは、上記の3つのタイプの合成データの利用例について説明します。 NLPモデルのトレーニングに合成テキストデータを使用する 合成データは、自然言語処理の分野で応用されています。たとえば、AmazonのAlexa AIチームは、既存の顧客インタラクションデータが存在しない場合や十分でない場合に、NLUシステム (自然言語理解) のトレーニングセットを完成させるために合成データを使用しています。 ビジョンアルゴリズムのトレーニングに合成データを使用する ここでは、広く使用されているユースケースについて説明します。たとえば、画像内の顔の数を検出または数えるアルゴリズムを開発したい場合を考えてみましょう。ジェネレーティブネットワーク (GAN) またはその他の生成ネットワークを使用して、実際には存在しない現実的な人間の顔、つまり顔を生成してモデルをトレーニングすることができます。また、誰かのプライバシーを侵害することなく、これらのアルゴリズムから必要なだけデータを生成することができます。しかし、実際のデータには個人の顔が含まれているため、プライバシーポリシーによってそのデータを使用することが制限されています。 別のユースケースとして、シミュレートされた環境で強化学習を行うことが考えられます。たとえば、オブジェクトをつかんで箱に入れるために設計されたロボットアームをテストしたい場合、この目的のために強化学習アルゴリズムが設計されます。強化学習アルゴリズムが学習する方法は、実験を行うことです。実際のシナリオで実験を行うことは非常にコストがかかり、時間がかかり、異なる実験を行うことが制限されます。しかし、シミュレートされた環境で実験を行う場合、実験を設定するのは比較的安価で、ロボットアームのプロトタイプが必要なくなります。…

機械学習とは何か?メリットとトップMLaaSプラットフォーム

機械学習は、明示的なプログラミングを必要とせずに予測出力を生成するために統計分析を使用します。データセットの関係を解釈するために学習するアルゴリズムの連鎖を使用して目標を達成します。残念ながら、ほとんどのデータサイエンティストはソフトウェアエンジニアではないため、成長する企業のニーズに応えるためにスケールアップすることが困難になることがあります。データサイエンティストは、Machine Learning as a Service(MLaaS)のおかげでこれらの複雑さを簡単に処理できます。 MLaasとは何ですか? 機械学習をサービスとして提供する(MLaaS)は、最近、データサイエンス、機械学習エンジニアリング、データエンジニアリング、およびその他の機械学習専門家にとっての利点から、多くの注目を集めています。「機械学習をサービスとして提供する」という用語は、機械学習技術を採用して回答を提供するクラウドベースのプラットフォームの幅広い範囲を指します。 顧客は、MLaaSを使用することで、社内の機械学習チームの構築のオーバーヘッドや関連するリスクを負わずに、機械学習の利点を享受することができます。予測分析、ディープラーニング、アプリケーションプログラミングインターフェース、データ可視化、自然言語処理など、さまざまなサプライヤーから提供されるサービスがあります。サービスプロバイダーのデータセンターがすべてのコンピューティングを処理します。 機械学習のコンセプトは何十年も前から存在していますが、最近になってメインストリームに入り、MLaaSはこの技術の次世代を表しています。MLaaSは、組織内で機械学習を実装する複雑さとコストを削減し、より迅速で正確なデータ分析を可能にすることを目指しています。一部のMLaaSシステムは、画像認識やテキスト読み上げ合成などの特定のタスクに特化して設計されていますが、他のものは、セールスやマーケティングなどの業界を横断した使用を想定して構築されています。 MLaaSはどのように機能しますか? MLaaSは、各企業が必要に応じてカスタマイズできる、事前に構築された一般的な機械学習ツールを提供するサービスのコレクションです。ここでは、データ可視化、APIの豊富さ、顔認識、NLP、PA、DLなどがすべて提供されています。MLaaSアルゴリズムの主なアプリケーションは、データパターンの発見です。これらの規則性は、数学モデルの基礎として使用され、新しい情報に基づく予測を作成するために使用されます。 MLaaSは、最初のフルスタックAIプラットフォームであり、モバイルアプリ、ビジネスデータ、産業用自動化制御、LiDarなどの最新のセンサーを含むさまざまなシステムを統合します。パターン認識に加えて、MLaaSは確率的推論も容易にします。これにより、独自の要件に合わせたワークフローを設計する際に、組織がさまざまなアプローチから選択できる包括的かつ信頼性の高いMLソリューションが提供されます。 MLaasの利点は何ですか? MLaaSを使用する主な利点は、基盤をゼロから構築する必要がないことです。多くの企業、特に中小企業、ボイジャイズ企業(SME)は、大量のデータを保管および処理するためのリソースと能力を持っていない場合があります。この情報を収容するための大量のストレージスペースを購入または構築する必要性は、さらに費用がかかります。ここで、MLaaSインフラストラクチャがデータの保存と管理を引き継ぎます。 MLaaSプラットフォームはクラウドプロバイダーであるため、クラウドストレージを提供し、機械学習の実験用データ、データパイプラインなどのデータを適切に管理する手段を提供し、データエンジニアがデータにアクセスして分析することが容易になります。 企業は、MLaaSプロバイダの予測分析およびデータ可視化ソリューションを使用することができます。さらに、感情分析、顔認識、クレジットリスク評価、企業情報、ヘルスケアなど、さまざまな用途に対するアプリケーションプログラミングインターフェース(API)も提供されています。 MLaaSを使用すると、データサイエンティストは、ほとんどの他のクラウドコンピューティングサービスとは異なり、長時間のソフトウェアインストールや独自のサーバーの調達を待つ必要がなく、すぐに機械学習を使用できます。 MLaaSでは、実際のコンピューティングは、企業にとって非常に便利です。 トップMLaaSプラットフォーム 1. AWS Machine Learning クラウドサービスに関しては、AWS…

NVIDIA H100 GPUがMLPerfベンチマークのデビューで生成型AIの標準を設定

主要のユーザーと業界標準のベンチマークによれば、NVIDIAのH100 Tensor Core GPUは特に生成型AIを駆動する大規模言語モデル(LLMs)において、最高のAIパフォーマンスを提供しています。 H100 GPUは、最新のMLPerfトレーニングベンチマークのすべての8つのテストで新記録を樹立し、生成型AIの新しいMLPerfテストでも優れた性能を発揮しました。この優れた性能は、単一のアクセラレータあたりの性能だけでなく、大規模サーバーでの性能も提供されています。 たとえば、スタートアップのInflection AIとGPUアクセラレートワークロードに特化したクラウドサービスプロバイダーであるCoreWeaveが共同開発した3,584台のH100 GPUを搭載した商用クラスターでは、GPT-3ベースの大規模トレーニングベンチマークを11分以下で完了しました。 「当社のお客様は、数千のH100 GPUが高速で低レイテンシのInfiniBandネットワーク上で稼働しているため、現在スケールで最先端の生成型AIおよびLLMを構築しています。」と、CoreWeaveの共同設立者でありCTOであるブライアン・ベンチュロ氏は述べています。「NVIDIAとの共同MLPerfサブミッションにより、お客様が享受できる優れたパフォーマンスが明確に示されました。」 本日利用可能な最高のパフォーマンス Inflection AIは、そのパフォーマンスを活用して、パーソナルAI「Pi」の先進的なLLMを構築しました。同社はAIスタジオとして、ユーザーが簡単で自然な方法で対話できるパーソナルAIを作成します。 「当社の最先端の大規模言語モデルは、CoreWeaveの強力なH100 GPUネットワークでトレーニングされたものであり、誰でも今日からパーソナルAIの力を体験できます。」と、Inflection AIのCEOであるムスタファ・スレイマン氏は述べています。 2022年初頭にMustafaとDeepMindのKarén Simonyan、Reid Hoffmanが共同設立したInflection AIは、NVIDIA GPUを使用して世界で最大のコンピューティングクラスターの1つを構築するためにCoreWeaveと協力することを目指しています。 トップパフォーマンスが利用可能に これらのユーザー体験は、今日発表されたMLPerfベンチマークで示されたパフォーマンスを反映しています。…

3Dプリントされたセラミックはガスタービンの燃料効率を向上させる可能性がある

研究者たちは、3Dプリントされたセラミックガスタービンは従来の金属製品よりも高い耐熱性を持っていることを発見しました

テーブル内の重複した値を見つけるための最高のSQLトリック2つ

まず、重複行の基準を定義してくださいテーブルから重複レコードを見つける方法の一つは、GROUP BYとHAVINGですもう一つの方法はROW_NUMBER()です詳細はこちらをご覧ください

Pythonを使用して北極の氷の傾向を分析する

Pythonは、データサイエンスのための卓越したプログラミング言語として、計測データを収集・クリーニング・解釈することが容易になりますPythonを使って、予測をバックテストし、モデルを検証することができますそして...

アーティストやクリエイターにとって最高のAIツール(2023年)

Otter.AI Otter.aiは、効率的なミーティングや会話の録音と記述を行うためのAIパワードプラットフォームです。自動音声認識を使用して、リアルタイムで暗号化され、簡単にアクセス可能で共有可能なノートを任意の議論から書き留めます。Otterは、Zoom、Microsoft Teams、Google Meetなどの一般的なプラットフォームで即座にミーティングに出席して録音することができます。私たちは、簡単に共有でき、重要なトピックを強調し、責任を割り当てる要約を作成します。Otterは、ビジネス、教育、個人の文脈で使用されているiOS、Android、Chromeの時間節約アプリです。精度、適応性(異なるスピーカーからの転写が可能)、時間節約の自動スライドキャプチャ機能に高い評価を受けています。 Runway  人工知能(A.I.)がRunwayを駆動する、コンテンツ作成プラットフォームで、人々がコンテンツを公開、編集、協力できるようにします。無制限の写真、テキストから画像の生成、消去と置換、テキストからカラーグレーディング、スーパースローモーション、A.I.トレーニングなど、AIが駆使された革新的な機能があります。グリーンスクリーン、インペインティング、モーショントラッキングは、ビデオ編集の機能の一部です。Runwayは、コンテンツ作成とビデオ編集の骨の折れる作業を効率化し、ユーザーが最終製品に完全に決定権を持つようにします。ソフトウェアには、安全に作曲、リソース、プロジェクトデータを共有するためのツールも含まれています。さらに、Runwayは、数分で変更できる専門的にデザインされたテンプレートの大規模なライブラリにアクセスできるようにしています。 DreamStudio  DreamStudioは、テキストに基づいて画像を生成するために人工知能を使用するコンピュータプログラムです。プラットフォームは、高品質の画像を作成する能力でよく知られているStable Diffusionと呼ばれる生成対抗ネットワーク(GAN)技術を使用しています。DreamStudioの多くの有用な機能は、アーティストやデザイナーにとって優れたリソースとなっています。テキストの説明から画像を作成する、インスピレーションとしての画像のインポート、スタイルバリアントの探索などが利用可能です。組み込みのアーカイブにより、ユーザーは以前の貢献を振り返ることができます。DreamStudioは、まだ開発初期の段階ではありますが、クリエイティブなタイプの間で人気が急速に高まっています。このプラットフォームは、画像作成プロセスを根本的に変える可能性があるため、注目されています。 Synthesia  Synthesiaは、A.I.ビデオを生成するためのプラットフォームで、A.I.ビデオを簡単かつ低コストで作成することができます。編集プログラムに触れることなく、誰でも本物の人物が主演のプロフェッショナルなビデオを作成できるブラウザ拡張機能です。 Synthesiaには、85種類以上の異なるタイプのA.I.アバター、120種類の異なる言語と方言、55種類の事前設計されたテンプレート、独自のA.I.アバターの作成が可能です。このプラットフォームには、カスタマーサポートや製品マーケティング映像から新しい従業員向けの内部トレーニング映像まで、さまざまな用途があります。 Synthesiaは、ビデオ制作コストを最大80%削減できる能力を持つため、様々な規模の30,000以上の企業が信頼しています。 Raw Shorts Raw Shortsは、テキストからビデオを作成するクリエイターや、Webやソーシャルメディア向けの説明映像、アニメーション、プロモーション映像を作成するためのテキスト-to-videoクリエーターと人工知能によるビデオエディターを提供することで、組織が作成を支援します。機械学習技術を使用して、脚本を読み取り、プロットポイントを抽出して適切なメディアを見つけます。任意のWebブラウザからアクセスできるプラットフォームには、テキストtoスピーチ、ダイナミックグラフィック、100万以上のメディアファイルなどの高度なツールが備わっています。A.I.があなたの映画の初期カットを生成し、ドラッグアンドドロップエディターで細かく調整して、望むように見せることができます。Capital One、American Airlines、Coca-Cola、IBM、Ocean Spray、Nielsen、Sony、Pfizerなどの有名企業が、Raw Shortsを信頼しています。 Murf AI Murf…

Ludwig – より「フレンドリーな」ディープラーニングフレームワーク

産業用途の深層学習については、私は避ける傾向があります興味がないわけではなく、むしろ人気のある深層学習フレームワークが扱いづらいと感じています私はPyTorchとTensorFlowを高く評価しています

Allen Institute for AI の研究者が、自然言語の指示に基づいて複雑で構成的な視覚的タスクを解決するための神経記号アプローチである VISPROG を紹介します

汎用AIシステムを探すことで、熟練したエンドツーエンドトレーニングモデルの開発が促進され、多くのモデルがユーザーがモデルと対話するためのシンプルな自然言語インターフェースを提供することを目的としています。大規模な自己教示学習に続く監視多目的学習がこれらのシステムを開発するための最も一般的な方法でした。彼らは最終的に、これらのシステムが困難なジョブの無限長尾にスケールするように望んでいます。しかしながら、この戦略は各タスクについて慎重に選択されたデータセットが必要です。自然言語で述べられた困難なアクティビティを、エンドツーエンドトレーニングされた特殊なモデルや他のプログラムが処理できるように、より単純なフェーズに分解することにより、この作業では大言語モデルを使用して複雑なタスクの長い尾を処理する方法について研究しています。  「この画像からBig Bang Theoryの7人の主要キャラクターをタグ付けしてください」とコンピュータビジョンプログラムに伝えます。システムは、以下の手順を実行する前に、指示の目的を最初に理解する必要があります。顔を検出し、知識ベースからBig Bang Theoryの主要キャラクターのリストを取得し、キャラクターリストを使用して顔を分類し、認識されたキャラクターの名前と顔を画像にタグ付けします。いくつかのビジョンおよび言語システムが各タスクを実行できますが、自然言語タスクの実行はエンドツーエンドトレーニングシステムの範囲外です。  図1:組成ビジュアル推論のためのモジュラーで解釈可能なニューロシンボリックシステム-VISPROG。 VISPROGは、自然言語の指示の少数のインスタンスと必要な高レベルのプログラムが与えられたGPT-3内の文脈学習を使用して、新しい指示ごとにプログラムを作成し、プログラムを入力画像に実行して予測を取得します。さらに、VISPROGは中間出力を理解可能な視覚的な正当化に縮小します。知識検索、算術、論理操作のさまざまなモジュールを組み合わせる呼び出しを行うジョブを実行するためにVISPROGを使用します。また、画像の分析と操作にも使用します。 AI研究所の研究者は、VISPROGと呼ばれるプログラムを提案しました。このプログラムは、視覚情報(単一の画像または画像のコレクション)と自然言語命令を入力とし、一連の命令、すなわちビジュアルプログラムを作成し、これらの命令を実行して必要な結果を生成します。ビジュアルプログラムの各行は、システムが現在サポートしている多くのモジュールの1つを呼び出します。モジュールは、事前に構築された言語モデル、OpenCV画像処理サブルーチン、算術および論理演算子であることができます。また、事前に構築されたコンピュータビジョンモデルにすることもできます。コードの前の行を実行して生成された入力は、モジュールによって消費され、後で使用できる中間出力を生成します。 前述の例では、VISPROGが作成したビジュアルプログラムで、顔検出器、GPT-3を知識検索システムとして、CLIPをopen-vocabulary画像分類器として使用して必要な出力を提供します(図1を参照)。VISPROGによってビジョンアプリケーションのプログラムの生成と実行の両方が向上します。ニューラルモジュールネットワーク(NMN)は、専門の、微分可能なニューラルモジュールを組み合わせて、ビジュアル質問応答(VQA)問題のための質問固有のエンドツーエンドトレーニング可能なネットワークを作成します。これらの方法は、REINFORCEの弱い回答監視を使用してレイアウトジェネレータをトレーニングするか、脆弱な、事前に構築された意味解析器を使用してモジュールのレイアウトを決定的に生成します。  対照的に、VISPROGは、強力な言語モデル(GPT-3)と文脈に限定された例を使用して、事前のトレーニングなしに複雑なプログラムを構築できるようにします。訓練された最先端のモデル、非ニューラルPythonサブルーチン、およびNMNよりも高い抽象レベルを呼び出すことにより、VISPROGプログラムはNMNよりも抽象的です。これらの利点により、VISPROGは迅速で効果的で柔軟なニューロシンボリックシステムです。さらに、VISPROGは非常に解釈可能です。まず、VISPROGは、ユーザーが確認できる論理的な正確さを持つ理解しやすいプログラムを作成します。第二に、予測を管理可能な部分に分解することにより、VISPROGはユーザーが中間段階の結果を調べて欠陥を見つけ、必要に応じてロジックを修正できるようにします。  予測の視覚的な正当化として、テキスト、バウンディングボックス、セグメンテーションマスク、生成された画像などの中間ステップの出力が接続された完成したプログラムが、情報の流れを示すために役立ちます。彼らはVISPROGを4つの異なる活動に使用して、その汎用性を紹介しています。これらのタスクには、一般的なスキル(画像解析など)が必要ですが、専門的な思考力と視覚的な操作スキルも必要です。これらのタスクには以下が含まれます: 構成的な視覚的質問に答えること。 画像ペアに対するゼロショットNLVR。 NL指示からの事実知識オブジェクトラベリング。 言語による画像操作。 彼らは、モジュールまたは言語モデルのいずれもが変更されていないことを強調しています。自然言語のコマンドと適切なプログラムのいくつかの文脈の例があれば、VISPROGを任意のタスクに適応することができます。VISPROGは使いやすく、構成的なVQAテストで2.7ポイントの大幅な利益、NLVRのゼロショットの正確さが62.4%、そして知識タグ付けと画像編集のタスクでの質的・量的な結果が良好です。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us