Learn more about Search Results 14 - Page 145
- You may be interested
- 初心者向けの生成AIの優しい紹介
- 「Pandasのスケーリング入門」
- 「予算の制約を持つ学生や起業家のための7...
- 中国が世界最速のインターネットを謳う
- このAI論文は、「GREAT PLEA」倫理的フレ...
- 「Microsoft Azureの新しいディープラーニ...
- 『Talent.com』において
- ロボット犬は、人間よりも侵略的なヒアリ...
- 「高速フーリエ変換のための量子速度アッ...
- 「データサイエンスの求職活動を諦める」
- 「トライするためのトップ50のAIライティ...
- 光ニューラルネットワークとトランスフォ...
- MetaがEmuビデオとEmu編集を発表:テキス...
- 「ヒープデータ構造の紹介」
- Seabornを使用してパンチカードプロットを...
METAのHiera:複雑さを減らして精度を高める
畳み込みニューラルネットワークは、20年以上にわたってコンピュータビジョンの分野を支配してきましたトランスフォーマーの登場により、それらは放棄されると考えられていましたしかし、多くの実践者は…
GPT-4 新しいOpenAIモデル
近年、人工知能に基づく自然言語システムの開発は前例のない進歩を遂げています
欧州とイスラエルのAIファーストスタートアップのための新しいアクセラレータ
この10週間のプログラムは、Googleとそのネットワークの最高の部分を活用して、AIをコアビジネスに使用しているスタートアップを、カスタマイズされたトレーニングとメンタリングでサポートします
予測の作成:Pythonにおける線形回帰の初心者ガイド
最も人気のある機械学習アルゴリズムである線形回帰について、その数学的直感とPythonによる実装をすべて学びましょう
PyTorchを使った転移学習の実践ガイド
この記事では、転移学習と呼ばれる技術を使用して、カスタム分類タスクに事前学習済みモデルを適応する方法を学びますPyTorchを使用した画像分類タスクで、Vgg16、ResNet50、およびResNet152の3つの事前学習済みモデルで転移学習を比較します
ChatGPTのバイアスを解消するバックパック:バックパック言語モデルはトランスフォーマーの代替AI手法です
AI言語モデルは私たちの生活の中で不可欠なものになっています。情報にアクセスするために数十年間Googleを使用してきましたが、今では徐々にChatGPTに切り替えています。ChatGPTは簡潔な回答と明確な説明を提供し、必要な情報を見つけるのが通常よりも速くなります。 これらのモデルは、私たちが長年にわたって生み出したデータから学習します。その結果、私たちはAIモデルにバイアスを転送し、これは議論の対象となっています。注目されている特定のバイアスの1つは、代名詞の分布におけるジェンダーバイアスであり、モデルが文脈に基づいて「彼」「彼女」といったジェンダーに関連する代名詞を好む傾向があるというものです。 このジェンダーバイアスに対処することは、公正で包括的な言語生成を確保するために重要です。たとえば、「CEOは信じている…」という文章を始めると、モデルは彼と続け、CEOを看護師に置き換えると、次のトークンは彼女になります。この例は、バイアスを調べ、それらを緩和する方法を探るための興味深い事例研究として役立ちます。 実際には、文脈はこれらのバイアスを形成する上で重要な役割を果たします。CEOを、異なるジェンダーに一般的に関連付けられている職業に置き換えることで、観察されたバイアスを反転することができます。しかし、ここでの課題は、CEOが現れるすべての異なる文脈で一貫してデバイアスを実現することです。特定の状況に関係なく、信頼性が高く、予測可能な介入を望んでいます。言語モデルを理解し、改善するためには解釈性と制御が重要です。残念ながら、現在のTransformerモデルは、その性能に驚くべきものがあるにもかかわらず、これらの基準を完全に満たしていません。彼らの文脈表現は、手元の文脈に依存する複雑で非線形な効果を導入します。 では、これらの課題をどのように克服できますか?大規模言語モデルに導入したバイアスにどう対処すればよいのでしょうか?Transformerを改善するべきなのでしょうか、それとも新しい構造を考えるべきなのでしょうか?答えはBackpack Language Modelsです。 Backpack LMは、センスベクトルとして知られる文脈非依存の表現を利用して、代名詞分布のデバイアス化の課題に取り組みます。これらのベクトルは、単語の意味と異なる文脈での役割を捉え、単語に複数のパーソナリティを与えます。 Backpack LMの概要。 出典:https://arxiv.org/pdf/2305.16765.pdf Backpack LMsでは、予測はセンスベクトルとして知られる文脈非依存の表現の対数線形の組み合わせになります。語彙中の各単語は、異なる文脈での単語の潜在的な役割を表す複数のセンスベクトルで表されます。 これらのセンスベクトルは、特定の文脈で予測的に有用になるように専門化されます。シーケンス内の単語のセンスベクトルの加重和は、コンテキスト関数によって決定されるシーケンス全体に作用する文脈関数によって決定されるBackpack 表現を形成し、重みが決定されます。これらのセンスベクトルを活用することで、Backpack モデルは、すべての文脈で予測可能な介入を実現します。 つまり、モデルに対して文脈非依存の変更を行っても、一貫してその振る舞いに影響を与えることができます。Transformerモデルに比べ、Backpack モデルはより透明性が高く、管理しやすいインターフェースを提供します。理解しやすく制御しやすい正確な介入を提供します。さらに、Backpack モデルは性能を犠牲にすることなく、Transformerモデルと同等の結果を実現します。 センスベクトルの例。 出典:https://backpackmodels.science/ Backpackモデルの意味ベクトルは、最新のトランスフォーマーモデルの単語埋め込みよりも豊富な単語の意味をエンコードしており、語彙の類似性タスクで優れた性能を発揮しています。さらに、職業に関する単語のジェンダーバイアスを減らすなど、意味ベクトルに介入することで、Backpackモデルが提供する制御機構が示されています。ジェンダーバイアスに関連する意味ベクトルを縮小することにより、限られた環境で文脈予測の不均衡を大幅に削減することができます。
サンタクララ大学を卒業した早熟なティーンプロディジー
カイラン・クアジフさんは14歳でカリフォルニア州のサンタクララ大学を卒業し、コンピューターサイエンスとエンジニアリングの学士号を取得した最年少の人物となりました
中間旅程のタトゥープロンプト
次のタトゥーのインスピレーションを探している場合は、Midjourneyを使用してみてください
AIがトランスコミュニティに与える悪影響を明らかにする
AIがトランスジェンダーに失敗している方法ジェンダー認識ソフトウェアの危険性、不適切な医療モデル、トランスフォビックなコンテンツの増幅
構造方程式モデリングにおける複数グループ分析
複数群分析(Multiple-group analysis、MGA)は、研究者が構造の指定を可能にすることにより、人口統計セグメントやサブポピュレーション間の違いを調査するための統計技術です
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.