Learn more about Search Results 14 - Page 142

人間の脳血管のアトラスは、アルツハイマー病における変化を強調します

科学者たちは、6つの領域にわたるアルツハイマー病関連の変化を強調するために、人間の脳血管の分子アトラスを作成しました

バーディーンChatGPTプラグインの使い方

この記事では、Bardeen ChatGPTプラグインを使って嫌な仕事を自動化する方法を紹介します

近接度とコミュニティ:PythonとNetworkXによるソーシャルネットワークの分析—Part 3

PythonとNetworkXを使用して近接中心性を計算し、ネットワークグラフを可視化する方法を学び、社会ネットワーク分析を実施する方法を学びます

メタAIのもう一つの革命的な大規模モデル — 画像特徴抽出のためのDINOv2

Mete AIは、画像から自動的に視覚的な特徴を抽出する新しい画像特徴抽出モデルDINOv2の新バージョンを紹介しましたこれはAIの分野でのもう一つの革命的な進歩です...

事前学習済みのViTモデルを使用した画像キャプショニングにおけるVision Transformer(ViT)

はじめに 事前学習済みのViTモデルを使用した画像キャプショニングは、画像の詳細な説明を提供するために画像の下に表示されるテキストまたは書き込みのことを指します。つまり、画像をテキストの説明に翻訳するタスクであり、ビジョン(画像)と言語(テキスト)を接続することで行われます。この記事では、PyTorchバックエンドを使用して、画像のViTを主要な技術として使用して、トランスフォーマーを使用した画像キャプショニングの生成方法を、スクラッチから再トレーニングすることなくトレーニング済みモデルを使用して実現します。 出典: Springer 現在のソーシャルメディアプラットフォームや画像のオンライン利用の流行に対応するため、この技術を学ぶことは、説明、引用、視覚障害者の支援、さらには検索エンジン最適化といった多くの理由で役立ちます。これは、画像を含むプロジェクトにとって非常に便利な技術であります。 学習目標 画像キャプショニングのアイデア ViTを使用した画像キャプチャリング トレーニング済みモデルを使用した画像キャプショニングの実行 Pythonを使用したトランスフォーマーの利用 この記事で使用されたコード全体は、このGitHubリポジトリで見つけることができます。 この記事は、データサイエンスブログマラソンの一環として公開されました。 トランスフォーマーモデルとは何ですか? ViTについて説明する前に、トランスフォーマーについて理解しましょう。Google Brainによって2017年に導入されて以来、トランスフォーマーはNLPの能力において注目を集めています。トランスフォーマーは、入力データの各部分の重要性を異なる重み付けする自己注意を採用して区別されるディープラーニングモデルです。これは、主に自然言語処理(NLP)の分野で使用されています。 トランスフォーマーは、自然言語のようなシーケンシャルな入力データを処理しますが、トランスフォーマーは一度にすべての入力を処理します。注意機構の助けを借りて、入力シーケンスの任意の位置にはコンテキストがあります。この効率性により、より並列化が可能となり、トレーニング時間が短縮され、効率が向上します。 トランスフォーマーアーキテクチャ 次に、トランスフォーマーのアーキテクチャの構成を見てみましょう。トランスフォーマーアーキテクチャは、主にエンコーダー-デコーダー構造から構成されています。トランスフォーマーアーキテクチャのエンコーダー-デコーダー構造は、「Attention Is All You Need」という有名な論文で発表されました。 エンコーダーは、各レイヤーが入力を反復的に処理することを担当し、一方で、デコーダーレイヤーはエンコーダーの出力を受け取り、デコードされた出力を生成します。単純に言えば、エンコーダーは入力シーケンスをシーケンスにマッピングし、それをデコーダーに供給します。デコーダーは、出力シーケンスを生成します。 ビジョン・トランスフォーマーとは何ですか?…

紛争のトレンドとパターンの探索:マニプールのACLEDデータ分析

はじめに データ分析と可視化は、複雑なデータセットを理解し、洞察を効果的に伝えるための強力なツールです。この現実世界の紛争データを深く掘り下げる没入型探索では、紛争の厳しい現実と複雑さに深く踏み込みます。焦点は、長期にわたる暴力と不安定状態によって悲惨な状況に陥ったインド北東部のマニプール州にあります。私たちは、武装紛争ロケーション&イベントデータプロジェクト(ACLED)データセット[1]を使用し、紛争の多面的な性質を明らかにするための詳細なデータ分析の旅に出ます。 学習目標 ACLEDデータセットのデータ分析技術に熟達する。 効果的なデータ可視化のスキルを開発する。 脆弱な人口に対する暴力の影響を理解する。 紛争の時間的および空間的な側面に関する洞察を得る。 人道的ニーズに対処するための根拠に基づくアプローチを支援する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 利害の衝突 このブログで提示された分析と解釈に責任を持つ特定の組織や団体はありません。目的は、紛争分析におけるデータサイエンスの潜在力を紹介することです。さらに、これらの調査結果には個人的な利益や偏見が含まれておらず、紛争のダイナミクスを客観的に理解するアプローチが確保されています。データ駆動型の方法を促進し、紛争分析に関する広範な議論に情報を提供するために、積極的に利用することを推奨します。 実装 なぜACLEDデータセットを使用するのか? ACLEDデータセットを活用することで、データサイエンス技術の力を活用することができます。これにより、マニプール州の状況を理解するだけでなく、暴力に関連する人道的側面にも光を当てることができます。ACLEDコードブックは、このデータセット[2]で使用されるコーディングスキームと変数に関する詳細な情報を提供する包括的な参考資料です。 ACLEDの重要性は、共感的なデータ分析にあります。これにより、マニプール州の暴力に関する理解が深まり、人道的ニーズが明らかにされ、暴力の解決と軽減に貢献します。これにより、影響を受けるコミュニティに平和で包摂的な未来が促進されます。 このデータ駆動型の分析により、貴重な洞察力を得るだけでなく、マニプール州の暴力の人的コストにも光が当てられます。ACLEDデータを精査することで、市民人口、強制的移動、必要なサービスへのアクセスなど、地域で直面する人道的現実の包括的な描写が可能になります。 紛争のイベント まず、ACLEDデータセットを使用して、マニプール州の紛争のイベントを調査します。以下のコードスニペットは、インドのACLEDデータセットを読み込み、マニプール州のデータをフィルタリングして、形状が(行数、列数)のフィルタリングされたデータセットを生成します。フィルタリングされたデータの形状を出力します。 import pandas as pd # ACLEDデータをダウンロードして国別のcsvをインポートする…

Amazon SageMaker Data WranglerのSnowflakeへの直接接続でビジネスインサイトまでの時間を短縮してください

Amazon SageMaker Data Wranglerは、1つのビジュアルインターフェイスで、コードを書くことなく機械学習(ML)ワークフローでデータの選択とクリーニング、特徴量エンジニアリングの実行に必要な時間を週から分単位に短縮することができ、データの準備を自動化することができますSageMaker Data Wranglerは、人気のあるSnowflakeをサポートしています

Pythonの依存関係管理:どのツールを選ぶべきですか?

あなたのデータサイエンスプロジェクトが拡大するにつれて、依存関係の数も増えますプロジェクトの環境を再現可能かつメンテナンス可能に保つために、効率的な依存関係を使用することが重要です...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us