Learn more about Search Results RT-2 - Page 13

次世代のコンピューティング:NVIDIAとAMDがAI、レンダリング、シミュレーションを加速する強力なワークステーションを提供します

プロフェッショナルがデスクトップからAIアプリケーションの構築と実行をできるようにするために、NVIDIAとAMDは新しいワークステーションを開発しています。このワークステーションは、NVIDIA RTX Ada Generation GPU と AMD Ryzen Threadripper PRO 7000 WX-Series CPU で搭載されています。 これらの新しいプラットフォームは、AIコンピューティング、レンダリング、シミュレーションの能力を最高水準で結集し、プロフェッショナルが最もリソースを消費する大規模なAIワークフローを効率的に処理できるようにします。 AIイノベーションをデスクトップに 高度なAIタスクには通常、データセンターレベルのパフォーマンスが必要です。例えば、1兆パラメータを持つ大規模な言語モデルをトレーニングするには、数週間にわたって数千のGPUが実行される必要があります。しかし、モデルのサイズを減らして高いAIモデルの精度を維持したまま、より小さなシステムでモデルのトレーニングを可能にするための研究も進行中です。 新しいNVIDIA RTX GPUとAMD CPUのワークステーションは、このような小さなモデルのトレーニングだけでなく、ローカルでの微調整やデータセンターやクラウドリソースのオフロードを支援することで、パワーとパフォーマンスを提供します。これらのデバイスは、ユーザーがワークロードに応じて単一のGPU構成またはマルチGPU構成を選択できるようにします。 小さなトレーニング済みのAIモデルは、ワークステーションをローカルインファレンスに使用する機会も提供します。RTX GPUとAMD CPUのワークステーションは、小規模のワークグループや部門向けのインファレンスサービングにこれらの小さなAIモデルを実行するように構成できます。…

『ランチェーンでチェーンを使用するための包括的ガイド』

イントロダクション 言語処理の最前線に足を踏み入れてください!言語が人間とテクノロジーの間の重要なつながりである領域で、自然言語処理の進歩はいくつかの驚異的な高みを開拓しました。この進歩の中には、画期的な大規模言語モデルがあります。これはテキストベースの情報との相互作用を再構築する革命的な力です。本総合学習プログラムでは、テキストベースの情報との相互作用を再構築する革新的なツールであるLangChainの複雑さに深く入り込んでいきます。あなたは「Langchain」はどんなチェーンか、考えたことはありますか? LangChainは、大規模言語モデルの最もダイナミックなフィールドへのゲートウェイとして独立して立っており、これらのモデルが生の入力を洗練された人間らしい反応に変換する方法について深い理解を提供しています。この探求を通じて、LangChainの基本的な構成要素を解き明かし、LLMチェーンやシーケンシャルチェーンからルーターチェーンの複雑な構造までを理解していきます。 学習目標 LLMチェーンやシーケンシャルチェーンを含むLangChainのコアコンポーネントを理解し、入力がシステムを流れる様子を観察します。 プロンプトテンプレートと言語モデルの接続を探求し、異なる要素を一貫して統合する方法を学びます。 現実のタスクに対して機能的なチェーンを作成する実践的な経験を積みます。 構造、テンプレート、パーシング技術を微調整することにより、チェーンの効率を向上させるスキルを開発します。 この記事はData Science Blogathonの一環として公開されました。 LLMとは何ですか? 大規模言語モデル(LLM)とは、人間らしいテキストを理解し生成するために設計された人工知能の一種を指します。OpenAIのGPT-3.5などのこれらのモデルは、人間の言語のパターンや構造を理解するために豊富なテキストデータでトレーニングされます。彼らは翻訳、コンテンツの作成、質問への回答など、さまざまな言語関連のタスクを実行することができます。 LLMは自然言語処理の貴重なツールであり、チャットボット、コンテンツ生成、言語翻訳サービスなどの分野で応用されています。 LangChainとは何ですか? LangChain Chainsの複雑さを解き明かす前に、LangChain自体の本質を把握しましょう。LangChainは、OpenAI、Cohere、Bloom、Huggingfaceなどのさまざまな大規模言語モデル(LLM)プロバイダーとの対話を簡素化するために設計された堅牢なライブラリです。LangChainの特徴的な点は、1つまたは複数のLLMを結ぶチェーンと論理的な接続を作成できる能力です。 LangChainを使う理由 LangChainは、想像力によって限られた機会を提供します。 情報を提供するだけでなく、ウィットと魅力でユーザーと関わるチャットボットを想像してください。 購入を迫られるほど正確に製品を提案する電子商取引プラットフォームを思い浮かべてください。 個別の医療情報を提供し、個人が健康に関する情報に基づいた意思決定を行えるようにする医療アプリを想像してください。 LangChainを使えば、非凡な体験を生み出す力があります。これらのアイデアを現実に変える可能性は、あなたの指先にあります。 LangChainにおけるチェーンの理解…

「7つの最高のクラウドデータベースプラットフォーム」

クラウドデータベースは、エンタープライズレベルのアプリケーションの開発をより簡単かつ低コストにし、柔軟性、利便性、そして標準的なデータベース機能を提供していますVoAGIがおすすめするものをご覧ください

「AutoGen:次世代の大規模言語モデルアプリケーションの動力源」

「大型言語モデル(LLM)は現在、主流のAI分野で最も話題とされています世界中の開発者たちは、LLMの潜在的な応用可能性を探求していますこれらのモデルは、ディープラーニングの技術と膨大な量のトレーニングデータを利用して、テキスト、音声、画像など、さまざまなコンテンツを理解、要約、予測、生成するAIアルゴリズムです」

『自分のデータでChatGPTを訓練する方法:ソフトウェア開発者向けガイド』

「MEMWALKERとの対話型リーディングにより、AIモデルの強化が行われ、より豊かで文脈を理解した対話が可能となり、現代のAIの可能性を広げています」

「大型言語モデル(LLM)のマスターに至る7つのステップ」

大型言語モデル(LLM)は、自然言語処理の新時代を開拓しましたでは、それについてもっと学びましょうこのガイドを使用して、大型言語モデルの基礎から始めて、7つの簡単なステップでLLMアプリを構築して展開する方法を学びましょう

カフカイベントストリーミングAIと自動化

「ChatGPTを使用して、IoT KafkaイベントコンシューマーとAPIロジックサーバーを探索し、定義された範囲外の温度測定イベントをロジックで生成する方法を調べてみましょう」

ChatGPT vs. BARD’の比較

大きな言語モデル(LLM)は、私たちが情報を処理し生産する方法を変革していますただし、これらのモデルを一つの解決策として考える前に、その主な違いを考慮する必要があります

「都市部の話題の中心地を特定する」

この記事では、OpenStreetMap(OSM)から収集された興味ポイント(POI)に基づいて、特定の興味に対してホットスポットを特定するために使用できる、簡単で使いやすい手法を紹介します

統計的有意性の解読:マーケターのガイド

「マーケターがキャンペーンの効果をどのように決定しているのか、考えたことはありますか?今日のデータ主導の世界では、統計的有意性の概念を理解することが重要です」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us