Learn more about Search Results H3 - Page 13
- You may be interested
- PanelでインタラクティブなMLダッシュボー...
- 「DALL·E 3はどのように作られましたか?...
- 「アルテアナのアートスクワッド」が結成...
- 🤗 ViTをVertex AIに展開する
- このAIニュースレターは、あなたが必要と...
- 「企業の持続可能性目標を達成するために...
- 一緒にAIを学ぶ – Towards AI コミ...
- 「Plotlyを使用したダイナミックなコロプ...
- 「Pythonによる(バイオ)イメージ解析:M...
- 医療AIツールは危険な誤りを引き起こす可...
- 決定科学がデザインと出会う” (Kett...
- 「DevOpsとDataOpsとの私の経験」
- 2023年のトップビジネスインテリジェンス...
- バイデン大統領がAI実行命令を発布し、安...
- 多くの顔を持つ世界地図 — マップの投影法
「この男性は誰でもバイラルにすることができます(10か月で21億回の視聴回数)」
「以下は、短編コンテンツで1か月で1億ビューを獲得するための6つのステップのフレームワークです...」
「大規模言語モデルをより効率的に最適化できるのか?LLMの効率性に関するアルゴリズムの進化についての包括的な調査をご覧ください」
より効率的に大規模言語モデルを最適化できるのか? マイクロソフト、南カリフォルニア大学、オハイオ州立大学など、複数の組織の研究者からなる研究チームが、LLM(大規模言語モデル)の効率向上を目指したアルゴリズムの進歩について徹底的なレビューを提供しています。スケーリングの法則、データの利用、アーキテクチャの革新、トレーニング戦略、推論技術などを網羅し、将来の効率的なLLM開発の礎を築こうとしています。 スケーリングの法則、データの利用、アーキテクチャの革新、トレーニング戦略、推論技術をカバーし、LLMの核心的な概念と効率指標について説明しています。このレビューでは、効率的なLLM開発に貢献する方法論の最新の総合的な概要を提供しています。研究者は関連する研究の見落としを認識し、さらなる参考文献の提案を推奨しています。 LLMは自然言語理解において重要な役割を果たしていますが、高い計算コストのために誰にでも簡単にアクセスできるものではありません。この課題に取り組むために、研究者は効率を向上させ、アクセス性を高めるためのアルゴリズムの進歩を継続的に行っています。これらの進歩は、AI、特に自然言語処理の領域における将来のイノベーションの道を切り拓いています。 この研究は、LLMの効率を向上させるアルゴリズムの進歩を調査しています。スケーリングの法則、データの利用、アーキテクチャの革新、トレーニング戦略、推論技術など、さまざまな効率の側面を検討しています。Transformer、RWKV、H3、Hyena、RetNetなどの具体的な方法が言及されています。議論には知識の蒸留法、コンパクトなモデル構築法、注意モデリングと計算の最適化のための頻度ベースの技術などの具体的な手法が含まれています。 この調査は、特定の領域に焦点を当てるのではなく、多様な効率の側面をカバーするLLMの効率についての包括的な視点を採用しています。貴重な情報源として役立ち、LLMの効率に関する今後のイノベーションの基盤を築いています。参考文献リポジトリを含めることで、この重要な分野のさらなる探求と研究のための有用性が高まります。ただし、研究の特定の結果や方法の詳細は、提供されたソースに明示的に記載されるべきです。 まとめると、この調査では、LLM技術の効率を高めるための最新のアルゴリズムの進歩について詳しく説明しています。スケーリングの法則、データの利用、アーキテクチャの革新、トレーニング戦略、推論技術をカバーしています。アルゴリズムの解決策の重要性を強調し、モデルの圧縮、知識の蒸留、量子化、低ランク分解などの手法を探求し、LLMの効率を向上させることになります。この包括的な調査は、LLMの効率の現状についてさまざまな貴重な洞察を提供する必須のツールです。
なぜAIチップの将来がニューロモーフィックコンピューティングにおいて重要なのか?
神経形態計算はAIとIoTを変革する可能性がありますより正確で多様性に富み、信頼性の高いアクセスしやすいAIの波を引き起こす可能性がありますが、依然として課題が残っています
「大規模言語モデルの微調整方法:ステップバイステップガイド」
2023年、アルパカ、ファルコン、ラマ2、およびGPT-4のような大規模言語モデル(LLM)の台頭は、人工知能の民主化の傾向を示しています
「MicrosoftがOrca2を公開し、初の控えめな論理思考者LLMを生み出します」
さらに、マイクロソフトは彼らの SLMの最新版であるOrca2を発表し、新たな言語モデルであるCautious Reasonersを作り出し、同時に新記録を樹立しました
「Hill Climbing Algorithm in AIとは何ですか?」
はじめに 人工知能(AI)の複雑な世界では、ヒルクライミングアルゴリズムが問題解決のための基本的な手法として登場します。この技術は、比喩的な山の登りと同様に、AIの最適化問題の複雑な地形を航海するために重要です。それは多くの可能性の中から最も効果的な解を見つける戦略的なアプローチであり、さまざまなAIアプリケーションの基盤となるものです。 ヒルクライミングアルゴリズムはどのように動作するのですか? ヒルクライミングアルゴリズムは、山の麓に立っているかのような基点から始まり、隣接する解を反復的に探索します。次の最善のステップを評価する登攀者のように、各アルゴリズムの移動は目的関数に対して精査される増分の変化です。この関数はアルゴリズムをピークに向かって導き、進行を保証します。 たとえば、迷路解決アプリケーションが素晴らしい例です。このシナリオでは、アルゴリズムが実行する各ステップは、迷路内での戦略的な動きを表し、出口への最短経路を目指します。アルゴリズムは各ポテンシャルステップを評価し、出口に近づける効果を測定します。これは、山の頂上に近づけるどのステップが登攀者を高めるかを考える登山者に似ています。 出典: Javapoint ヒルクライミングアルゴリズムの特徴 ヒルクライミングアルゴリズムの主な特徴は次のとおりです: 生成と試行アプローチ:この特徴は、隣接する解を生成し、その効果を評価し、常に解空間で上昇することを目的としています。 グリーディローカルサーチ:このアルゴリズムは、即座のメリットがある動きを選択し、ローカルな改善を約束する安価な戦略を使用します。 バックトラッキングしない:他のアルゴリズムとは異なり、ヒルクライミングは以前の決定を再訪したり再考したりせず、最適解を探求するために進んで進みます。 ヒルクライミングアルゴリズムの種類 ヒルクライミングアルゴリズムにはさまざまな形式があり、それぞれ特定のシナリオに適しています: 単純なヒルクライミング このバージョンでは、隣接する解を評価し、現在の状態を改善する最初の解を選択します。たとえば、配送ルートの最適化では、最初の代替ルートを選択し、配送時間を短縮する場合でも、最適ではないとしても選択します。 アルゴリズム: ステップ 1:初期状態で開始します。 ステップ 2:初期状態が目標であるかどうかをチェックします。目標であれば、成功を返して終了します。 ステップ 3:改善された状態を連続的に探索するループに入ります。 ループ内で、現在の状態にオペレータを適用して隣接状態を選択します。…
「エンティティ抽出、SQLクエリ、およびAmazon Bedrockを使用したRAGベースのインテリジェントドキュメントアシスタントの強化」
会話AIは、最近の生成AIの急速な発展により、特に指示微調整や人間のフィードバックからの強化学習といったトレーニング技術によって導入された大規模言語モデル(LLM)のパフォーマンス改善により、大きな進歩を遂げてきました正しくプロンプトされると、これらのモデルは特定のタスクのトレーニングデータなしで、一貫した会話を行うことができます[…]
「Q4 Inc.が、Q&Aチャットボットの構築において、数値と構造化データセットの課題に対処するために、Amazon Bedrock、RAG、およびSQLDatabaseChainを使用した方法」
この投稿は、Q4 Inc.のスタニスラフ・エシェンコと共同執筆されました企業は、問答型チャットボットを構築する主流アプローチとして、Retrieval Augmented Generation(RAG)に注目しています利用可能なデータセットの性質から生じる新たな課題が引き続き現れていることを確認していますこれらのデータセットは、しばしば数値とテキストデータの混合であり、時には構造化されています
「Pixel 8 Pro」という初めてのAI搭載スマートフォンは、現在Gemini Nanoで稼働しており、さらにAIのアップデートがPixelポートフォリオにも導入されています」
ニューフィーチャードロップは、Pixelハードウェアへのアップデートをもたらしますさらに、Gemini Nanoは、Pixel 8 Proのデバイス内生成AI機能をパワーアップします
言語モデルを使用したドキュメントの自動要約のテクニック
要約は、大量の情報をコンパクトで意味のある形式に短縮する技術であり、情報豊かな時代における効果的なコミュニケーションの基盤となっていますデータの溢れる世界で、長いテキストを短い要約にまとめることで時間を節約し、的確な意思決定を支援します要約は内容を短縮して提示することにより、時間を節約し、明確さを向上させる役割を果たします
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.