Learn more about Search Results Clean Code - Page 13
- You may be interested
- 「生データから洗練されたデータへ:デー...
- 「ODSC Europe 2023のトップバーチャルセ...
- 「Pythonによる効率的なカメラストリーム」
- フェイブルスタジオは、TV番組の完全に新...
- マイクロソフトリサーチは、Florence-2と...
- data2vec 自己教師あり学習における画期的...
- 「IoTエッジデバイスのためのクラウドベー...
- 類似検索、パート7 LSHの組み合わせ
- 「ウォルマートの大胆な動き:50000人の企...
- 大規模言語モデルにおける文脈の長さの拡張
- 新しいAmazon KendraのWebクローラーを使...
- 光を基にした機械学習システムは、より強...
- 「関係深層学習ベンチマーク(RelBench)...
- 「AIがデジタルツインを2024年にどのよう...
- 「なりすまし検出機能は、ソーシャルメデ...
Fast.AIディープラーニングコースからの7つの教訓
「最近、Fast.AIのPractical Deep Learning Courseを修了しましたこれまでに多くの機械学習コースを受講してきましたので、比較することができますこのコースは間違いなく最も実践的でインスピレーションを受けるものの一つですですので…」
「AIを使ってGmailの受信トレイをクリアする方法」
あなたはGmailの受信トレイでメールの山を探検するのに疲れていますか?ニュースレターやプロモーション、スパムに溺れている自分を見つけますか?それでは、あなたは一人ではありません。メールの過負荷は私たちのデジタル時代における共通の問題です。そして、AIのおかげで、メールがあふれる問題に完璧な解決策があります。AIを使ってGmailの受信トレイを整理する方法を学びましょう! Gmailの受信トレイを整理するためのトップ5のAIツール これらのAIパワードツールは、Gmailの受信トレイを取り戻すために必要な方にとって非常に価値のあるものです。メールのクリーンアップ、整理、優先順位付けを自動化することで、ユーザーは生産性を保ち、重要なことに集中することができます。混雑した受信トレイに対処しているか、単にメールの管理を効率化したい場合でも、これらのトップ5のAIツールはあなたをサポートします。 Clean.email Clean.emailは、メールの受信トレイを簡単にクリーンアップし管理するための強力なツールと機能を提供しています。Clean.emailがあなたにできることを詳しく見てみましょう: 主な特徴 メールのバンドル: Clean.emailは、送信者、件名、またはラベルなどの共通の特徴に基づいてメールを知的にバンドルすることができます。これらのバンドルされたメールは、便利にゴミ箱に移動したり一緒にアーカイブしたりすることができます。これにより、受信トレイが整理され、シンプルになります。 ニュースレターの管理: 邪魔なニュースレターが受信トレイを詰まらせているのにうんざりしていますか?Clean.emailを使用すると、ニュースレターの購読を解除したり一時停止したりすることができます。また、ニュースレターの最新バージョンのみを保持することも選択できますので、受信トレイを新鮮で関連性のある状態に保つことができます。 クイッククリーン: メールを迅速にクリアしたいですか?クイッククリーン機能は、ソーシャル通知や指定期間より古いメッセージ(例:3年以上前のメール)など、一般的にクリーンアップされるメールを対象にしており、簡単に整理するのに役立ちます。 スマートビュー: Clean.emailはスマートビューを使用してメールを知的に整理します。類似した種類のメールは一緒にグループ化され、受信トレイのナビゲーションが簡素化され、重要なことに集中しやすくなります。 広範なメールプロバイダのサポート: Gmail、Yahoo、AOL、iCloud、Outlook、およびIMAPを使用している他のメールサービス。 このツールを使ってGmailの受信トレイをクリーニングしてみましょう。 Mailsorm このAIメールクリーナーは、メールの管理を簡素化する堅牢なメールクリーンアップツールです。 主な特徴 メールのバンドル: Mailsormは、関連するメールを特定し、それらを一緒にバンドルすることに優れています。この機能により、関連するメールをグループとして管理できるため、一括でアクションを実行しやすくなります。 スパムブロック: 受信トレイを詰ませるスパムメールにさようならを言いましょう。Mailsormは便利なワンクリックのスパムブロック機能を提供し、受信トレイをクリーンで不要なメールから解放します。…
「Amazon TextractとAmazon OpenSearchを使用してスマートなドキュメント検索インデックスを実装する」
この投稿では、ドキュメント検索インデックスソリューションを迅速に構築および展開する旅に連れて行きますこのソリューションは、組織がドキュメントから洞察をより効果的に抽出するのを支援します例えば、人事部門では従業員契約の特定の条項を探しているか、財務アナリストでは支払いデータを抽出するために膨大な数の請求書を選別している場合でも、このソリューションは、あなたが必要な情報に前例のない速度と正確さでアクセスできるようにするためにカスタマイズされています
Amazon CloudWatchで、ポッドベースのGPUメトリクスを有効にします
この記事では、コンテナベースのGPUメトリクスの設定方法と、EKSポッドからこれらのメトリクスを収集する例について詳しく説明します
「過去のデータ、Ray、およびAmazon SageMakerを使用して装置のパフォーマンスを最適化する」
この記事では、Amazon SageMakerを使用してRayのRLlibライブラリを使って、過去のデータのみを使用して最適な制御ポリシーを見つけるためのエンドツーエンドのソリューションを構築します強化学習についてもっと学ぶには、Amazon SageMakerで強化学習を使用するを参照してください
「モデルガバナンスを向上させるために、Amazon SageMaker Model Cardsの共有を利用してください」
MLガバナンスの一環として利用可能なツールの1つは、Amazon SageMaker Model Cardsですこのツールは、モデルのライフサイクル全体での文書化を中央集権化して標準化することにより、モデル情報の真実の一元化を可能にします SageMakerモデルカードにより、モデルの設計、構築、トレーニング、評価など、モデルのライフサイクルを可視化するための標準化が可能になりますモデルカードは、監査や文書化の目的で信頼性のあるビジネスおよび技術メタデータの真実の一元化を意図していますモデルの重要な情報を提供するファクトシートとなります
Amazon SageMakerのマルチモデルエンドポイントを使用して、TorchServeを使ってGPU上で複数の生成AIモデルを実行し、推論コストを最大75%節約できます
最近、生成AIアプリケーションは広範な注目と想像力を引きつけています顧客はGPU上で生成AIモデルを展開したいと思っていますが、同時にコストにも気を使っていますSageMaker MMEはGPUインスタンスをサポートしており、このようなタイプのアプリケーションには最適なオプションです本日は、TorchServeがSageMaker MMEをサポートすることをお知らせしますこの新しいモデルサーバーサポートにより、TorchServeの顧客が最も馴染みのあるサービングスタックを使用しながら、MMEのすべての利点を活用することができますこの記事では、Stable DiffusionやSegment Anything Modelなどの生成AIモデルをTorchServeを使用してSageMaker MME上でホストし、アーティストやコンテンツクリエーターが作品をより速く開発し、イテレーションするための言語による編集ソリューションの構築方法を示します
「Amazon Kendraを使用して、Adobe Experience Managerのコンテンツを賢く検索する」
この投稿では、Amazon Kendra AEMコネクタを設定してコンテンツをインデックス化し、AEMのアセットとページを検索する方法を紹介しますコネクタはまた、各ドキュメントのアクセス制御リスト(ACL)情報も取り込みますACL情報は、ユーザーがアクセス権を持っているものに絞り込まれた検索結果を表示するために使用されます
「Amazon SageMaker JumpStartを使用して、Generative AIとRAGを活用して安全なエンタープライズアプリケーションを構築する」
この投稿では、AWS Amplifyを使用してセキュアなエンタープライズアプリケーションを構築し、Amazon SageMaker JumpStart基盤モデル、Amazon SageMakerエンドポイント、およびAmazon OpenSearch Serviceを呼び出して、テキストからテキストまたはテキストから画像への変換、およびRetrieval Augmented Generation(RAG)の作成方法を説明しますこの投稿を参考にして、AWSサービスを使用してジェネレーティブAI領域のセキュアなエンタープライズアプリケーションを構築するために利用できます
「Amazon SageMakerの非同期エンドポイントを使用して、Amazon SageMaker JumpStartの基礎モデルのデプロイコストを最適化する」
この投稿では、これらの状況を対象にし、Amazon SageMaker JumpStartからAmazon SageMaker非同期エンドポイントに大規模な基盤モデルを展開することによって高コストのリスクを解決しますこれにより、アーキテクチャのコストを削減し、リクエストがキューにある場合や短い生存期間のみエンドポイントを実行し、リクエストが待機している場合にはゼロにスケーリングダウンしますこれは多くのユースケースにとって素晴らしいですが、ゼロにスケーリングダウンしたエンドポイントは、推論を提供できる前に冷たいスタート時間を導入します
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.