Learn more about Search Results BLOOM - Page 13

🤗 Accelerateは、PyTorchのおかげで非常に大規模なモデルを実行する方法です

大規模モデルの読み込みと実行 Meta AIとBigScienceは最近、ほとんどの一般的なハードウェアのメモリ(RAMまたはGPU)に収まらない非常に大きな言語モデルをオープンソース化しました。Hugging Faceでは、私たちの使命の一部として、それらの大きなモデルにアクセスできるようにするためのツールを開発しました。そのため、スーパーコンピュータを所有していなくても、これらのモデルを実行できるようにするためのツールを開発しました。このブログ投稿で選ばれたすべての例は、無料のColabインスタンス(制限付きのRAMとディスク容量)で実行されます。ディスク容量に余裕がある場合は、より大きなチェックポイントを選択することもできます。 ここでは、OPT-6.7Bを実行する方法を示します: import torch from transformers import pipeline # これは基本的なColabインスタンスで動作します。 # もし時間がかかっても待つ時間と十分なディスク容量がある場合は、より大きなチェックポイントを選択してください! checkpoint = "facebook/opt-6.7b" generator = pipeline("text-generation", model=checkpoint, device_map="auto", torch_dtype=torch.float16)…

最適化ストーリー:ブルーム推論

この記事では、bloomをパワーアップする効率的な推論サーバーの裏側について説明します。 数週間にわたり、レイテンシーを5倍削減し(スループットを50倍に増やしました)、このような速度向上を達成するために私たちが経験した苦労やエピックな勝利を共有したかったです。 さまざまな人々が多くの段階で関与していたため、ここではすべてをカバーすることはできません。また、最新のハードウェア機能やコンテンツが定期的に登場するため、一部の内容は古くなっているか、まったく間違っている可能性があることをご了承ください。 もし、お好みの最適化手法が議論されていなかったり、正しく表現されていなかったりした場合は、お詫び申し上げます。新しいことを試してみたり、間違いを修正するために、ぜひお知らせください。 言うまでもなく、まず大きなモデルが最初にアクセス可能でなければ、それを最適化する理由はありません。これは、多くの異なる人々によってリードされた信じられないほどの取り組みでした。 トレーニング中にGPUを最大限に活用するために、いくつかの解決策が検討され、結果としてMegatron-Deepspeedが最終的なモデルのトレーニングに選ばれました。これは、コードがそのままではtransformersライブラリと互換性がない可能性があることを意味します。 元のトレーニングコードのため、通常行っていることの1つである既存のモデルをtransformersに移植することに取り組みました。目標は、トレーニングコードから関連する部分を抽出し、transformers内に実装することでした。この取り組みには「Younes」が取り組みました。これは、1ヶ月近くかかり、200のコミットが必要でした。 後で戻ってくるいくつかの注意点があります: 小さなモデルbigscience/bigscience-small-testingとbigscience/bloom-560mを用意する必要があります。これは非常に重要です。なぜなら、それらと一緒に作業するとすべてが高速化されるからです。 まず、最後のログがバイトまで完全に同じになることを望むことをあきらめる必要があります。PyTorchのバージョンがカーネルを変更し、微妙な違いを導入する可能性があり、異なるハードウェアでは異なるアーキテクチャのため異なる結果が得られる場合があります(コストの理由から常にA100 GPUで開発したくはないでしょう)。 すべてのモデルにとって、良い厳格なテストスイートを作ることは非常に重要です 私たちが見つけた最高のテストは、固定された一連のプロンプトを持つことでした。プロンプトを知っており、決定論的な結果が得られる必要があります。2つの生成物が同じであれば、小さなログの違いは無視できます。ドリフトが見られるたびに調査する必要があります。それは、あなたのコードがやるべきことをしていないか、または実際にそのモデルがドメイン外であるためにノイズに対してより敏感であるかのいずれかです。いくつかのプロンプトと十分に長いプロンプトがあれば、すべてのプロンプトを誤ってトリガーする可能性は低くなります。プロンプトが多ければ多いほど良く、プロンプトが長ければ長いほど良いです。 最初のモデル(small-testing)は、bloomと同じようにbfloat16であり、すべてが非常に似ているはずですが、それほどトレーニングされていないか、うまく機能しないため、出力が大きく変動します。そのため、これらの生成テストに問題がありました。2番目のモデルはより安定していましたが、bfloat16ではなくfloat16でトレーニングおよび保存されていました。そのため、2つの間にはエラーの余地があります。 完全に公平を期すために言えば、bfloat16→float16への変換は推論モードでは問題なさそうです(bfloat16は主に大きな勾配を扱うために存在しません)。 このステップでは、重要なトレードオフが発見され、実装されました。bloomは分散環境でトレーニングされたため、一部のコードはLinearレイヤー上でテンソル並列処理を行っており、単一のGPU上で同じ操作を実行すると異なる結果が得られていました。これを特定するのにかなりの時間がかかり、100%の準拠を選択した場合、モデルの速度が遅くなりましたが、少しの差がある場合は実行が速く、コードがシンプルになりました。設定可能なフラグを選択しました。 注:この文脈でのパイプライン並列処理(PP)は、各GPUがいくつかのレイヤーを所有し、各GPUがデータの一部を処理してから次のGPUに渡すことを意味します。 これで、動作可能なtransformersのクリーンなバージョンがあり、これに取り組むことができます。 Bloomは352GB(176Bパラメーターのbf16)のモデルであり、それに合わせるために少なくともそれだけのGPU RAMが必要です。一時的に小さなマシンでCPUにオフロードすることを検討しましたが、推論速度が桁違いに遅くなるため、それを取り下げました。 次に、基本的にはパイプラインを使用したかったのです。つまり、ドッグフーディングであり、これがAPIが常に裏で使用しているものです。 ただし、pipelinesは分散意識がありません(それがその目的ではありません)。オプションを簡単に話し合った後、新しく作成されたdevice_map="auto"を使用してモデルのシャーディングを管理するためにaccelerateを使用することにしました。いくつかのバグを修正し、transformersのコードを修正してaccelerateが正しい仕事をするのを助ける必要がありました。 これは、transformersのさまざまなレイヤーを分割し、各GPUにモデルの一部を与えて動作させることで機能します。つまり、GPU0が作業を行い、次にGPU1に引き渡し、それ以降同様に行います。 最終的には、上に小さなHTTPサーバーを置くことで、bloom(大規模なモデル)を提供できるようになりました!…

🤗評価による言語モデルのバイアスの評価

大規模な言語モデルのサイズと能力は過去数年間で大幅に向上していますが、これらのモデルとそのトレーニングデータに刻み込まれたバイアスへの懸念も同様に高まっています。実際、多くの人気のある言語モデルは特定の宗教や性別に対してバイアスがあることが判明しており、これによって差別的な考えの促進やマージナライズドグループへの害の持続が引き起こされる可能性があります。 コミュニティがこのようなバイアスを探索し、言語モデルがエンコードする社会的な問題に対する理解を強化するために、私たちはバイアスのメトリクスと測定値を🤗 Evaluate ライブラリに追加する作業を行ってきました。このブログ投稿では、新しい機能のいくつかの例とその使用方法について紹介します。GPT-2 や BLOOM のような因果言語モデル (CLMs) の評価に重点を置き、プロンプトに基づいた自由なテキストの生成能力を活かします。 実際に作業を見るには、作成した Jupyter ノートブックをチェックしてください! ワークフローには次の2つの主要なステップがあります: あらかじめ定義された一連のプロンプトを言語モデルに提示する(🤗 データセットでホストされている) メトリクスや測定値を使用して生成物を評価する(🤗 Evaluate を使用) 有害な言語に焦点を当てた3つのプロンプトベースのタスクでバイアスの評価を進めましょう:有害性、極性、および害悪性。ここで紹介する作業は、Hugging Face ライブラリを使用してバイアスの分析にどのように活用するかを示すものであり、使用される特定のプロンプトベースのデータセットには依存しません。重要なことは、最近導入されたバイアスの評価用データセットがモデルが生み出す様々なバイアスを捉えていない初歩的なステップであるということです(詳細については以下の議論セクションを参照してください)。 有害性 実世界のコンテキストで CLM…

24GBのコンシューマーGPUでRLHFを使用して20B LLMを微調整する

私たちは、trlとpeftの統合を正式にリリースし、Reinforcement Learningを用いたLarge Language Model (LLM)のファインチューニングを誰でも簡単に利用できるようにしました!この投稿では、既存のファインチューニング手法と競合する代替手法である理由を説明します。 peftは一般的なツールであり、多くのMLユースケースに適用できますが、特にメモリを多く必要とするRLHFにとって興味深いです! コードに直接深く入りたい場合は、TRLのドキュメンテーションページで直接例のスクリプトをチェックしてください。 イントロダクション LLMとRLHF 言語モデルとRLHF(Reinforcement Learning with Human Feedback)を組み合わせることは、ChatGPTなどの非常に強力なAIシステムを構築するための次の手段として注目されています。 RLHFを用いた言語モデルのトレーニングは、通常以下の3つのステップを含みます: 1- 特定のドメインまたは命令のコーパスで事前学習されたLLMをファインチューニングする 2- 人間によって注釈付けされたデータセットを収集し、報酬モデルをトレーニングする 3- ステップ1で得られたLLMを報酬モデルとデータセットを用いてRL(例:PPO)でさらにファインチューニングする ここで、ベースとなるLLMの選択は非常に重要です。現時点では、多くのタスクに直接使用できる「最も優れた」オープンソースのLLMは、命令にファインチューニングされたLLMです。有名なモデルとしては、BLOOMZ、Flan-T5、Flan-UL2、OPT-IMLなどがあります。これらのモデルの欠点は、そのサイズです。まともなモデルを得るには、少なくとも10B+スケールのモデルを使用する必要がありますが、モデルを単一のGPUデバイスに合わせるだけでも40GBのGPUメモリが必要です。 TRLとは何ですか? trlライブラリは、カスタムデータセットとトレーニングセットアップを使用して、誰でも簡単に自分のLMをRLでファインチューニングできるようにすることを目指しています。他の多くのアプリケーションの中で、このアルゴリズムを使用して、ポジティブな映画のレビューを生成するモデルをファインチューニングしたり、制御された生成を行ったり、モデルをより毒性のないものにしたりすることができます。…

倫理と社会のニュースレター#3:Hugging Faceにおける倫理的なオープンさ

ミッション:オープンで良い機械学習 私たちのミッションは、良い機械学習(ML)を民主化することです。MLコミュニティの活動を支援することで、潜在的な害の検証と予防も可能になります。オープンな開発と科学は、権力を分散させ、多くの人々が自分たちのニーズと価値観を反映したAIに共同で取り組むことができるようにします。オープンさは研究とAI全体に広範な視点を提供する一方で、リスクコントロールの少ない状況に直面します。 MLアーティファクトのモデレーションには、これらのシステムのダイナミックで急速に進化する性質による独自の課題があります。実際、MLモデルがより高度になり、ますます多様なコンテンツを生成する能力を持つようになると、有害なまたは意図しない出力の可能性も増大し、堅牢なモデレーションと評価戦略の開発が必要になります。さらに、MLモデルの複雑さと処理するデータの膨大さは、潜在的なバイアスや倫理的な懸念を特定し対処する課題を悪化させます。 ホストとして、私たちはユーザーや世界全体に対して潜在的な害を拡大する責任を認識しています。これらの害は、特定の文脈に依存して少数派コミュニティに不公平に影響を与えることが多いです。私たちは、各文脈でプレイしている緊張関係を分析し、会社とHugging Faceコミュニティ全体で議論するアプローチを取っています。多くのモデルが害を増幅する可能性がありますが、特に差別的なコンテンツを含む場合、最もリスクの高いモデルを特定し、どのような対策を取るべきかを判断するための一連の手順を踏んでいます。重要なのは、さまざまなバックグラウンドを持つアクティブな視点が、異なる人々のグループに影響を与える潜在的な害を理解し、測定し、緩和するために不可欠であるということです。 私たちは、オープンソースの科学が個人を力付け、潜在的な害を最小限に抑えるために、ツールや保護策を作成するとともに、ドキュメンテーションの実践を改善しています。 倫理的なカテゴリ 私たちの仕事の最初の重要な側面は、価値観とステークホルダーへの配慮を優先するML開発のツールとポジティブな例を促進することです。これにより、ユーザーは具体的な手順を踏むことで未解決の問題に対処し、ML開発の標準的な実践に代わる可能性のある選択肢を提示することができます。 ユーザーが倫理に関連するMLの取り組みを発見し、関わるために、私たちは一連のタグを編纂しました。これらの6つの高レベルのカテゴリは、コミュニティメンバーが貢献したスペースの分析に基づいています。これらは、倫理的な技術について無専門用語の方法で考えるための設計されています: 厳密な作業は、ベストプラクティスを考慮して開発することに特に注意を払います。MLでは、これは失敗事例の検証(バイアスや公正性の監査を含む)、セキュリティ対策によるプライバシーの保護、および潜在的なユーザー(技術的および非技術的なユーザー)がプロジェクトの制約について知らされることを意味します。 コンセントフルな作業は、これらの技術を使用し、影響を受ける人々の自己決定を支援します。 社会的に意識の高い作業は、技術が社会、環境、科学の取り組みを支援する方法を示しています。 持続可能な作業は、機械学習を生態学的に持続可能にするための技術を強調し、探求します。 包括的な作業は、機械学習の世界でビルドし、利益を享受する人々の範囲を広げます。 探求的な作業は、コミュニティに技術との関係を再考させる不公正さと権力構造に光を当てます。 詳細はhttps://huggingface.co/ethicsをご覧ください。 これらの用語を探してください。新しいプロジェクトで、コミュニティの貢献に基づいてこれらのタグを使用し、更新していきます! セーフガード オープンリリースを「全てか無し」の視点で見ることは、MLアーティファクトのポジティブまたはネガティブな影響を決定する広範な文脈の多様性を無視しています。MLシステムの共有と再利用の方法に対するより多くの制御レバーがあることで、有害な使用や誤用を促進するリスクを減らすことができ、共同開発と分析をサポートします。よりオープンでイノベーションに参加できる環境を提供します。 私たちは、直接貢献者と関わり、緊急の問題に対処してきました。さらに進めるために、私たちはコミュニティベースのプロセスを構築しています。このアプローチにより、Hugging Faceの貢献者と貢献に影響を受ける人々の両方が、プラットフォームで利用可能なモデルとデータに関して制限、共有、追加のメカニズムについて情報提供することができます。私たちは、アーティファクトの起源、開発者によるアーティファクトの取り扱い、アーティファクトの使用状況について特に注意を払います。具体的には、次のような取り組みを行っています: コミュニティがMLアーティファクトやコミュニティコンテンツ(モデル、データセット、スペース、または議論)がコンテンツガイドラインに違反しているかどうかを判断するためのフラッグ機能を導入しました。 ハブのユーザーが行動規範に従っているかを確認するために、コミュニティのディスカッションボードを監視しています。 最もダウンロードされたモデルについて、社会的な影響やバイアス、意図された使用法と範囲外の使用法を詳細に説明するモデルカードを堅牢に文書化しています。…

AWS Inferentia2を使用してHugging Face Transformersを高速化する

過去5年間、Transformerモデル[1]は、自然言語処理(NLP)、コンピュータビジョン(CV)、音声など、多くの機械学習(ML)タスクのデファクトスタンダードとなりました。今日、多くのデータサイエンティストやMLエンジニアは、BERT[2]、RoBERTa[3]、Vision Transformer[4]などの人気のあるTransformerアーキテクチャ、またはHugging Faceハブで利用可能な130,000以上の事前学習済みモデルを使用して、最先端の精度で複雑なビジネス問題を解決するために頼っています。 しかし、その優れた性能にもかかわらず、Transformerは本番環境での展開には困難を伴うことがあります。モデル展開に通常関連するインフラストラクチャの設定に加えて、我々はInference Endpointsサービスで大部分の問題を解決しましたが、Transformerは通常、数ギガバイトを超える大きなモデルです。GPT-J-6B、Flan-T5、Opt-30Bなどの大規模言語モデル(LLM)は数十ギガバイトであり、BLOOMなどの巨大なモデルは350ギガバイトもあります。 これらのモデルを単一のアクセラレータに適合させることは非常に困難ですし、会話型アプリケーションや検索のようなアプリケーションが必要とする高スループットと低推論レイテンシを実現することはさらに難しいです。MLの専門家たちは、大規模モデルをスライスし、アクセラレータクラスタに分散させ、レイテンシを最適化するために複雑な手法を設計してきました。残念ながら、この作業は非常に困難で時間がかかり、多くのMLプラクティショナーには到底手の届かないものです。 Hugging Faceでは、MLの民主化を進めるとともに、すべての開発者と組織が最先端のモデルを利用できるようにすることを目指しています。そのため、今回はAmazon Web Servicesと提携し、Hugging Face TransformersをAWS Inferentia 2に最適化することに興奮しています!これは、前例のないスループット、レイテンシ、パフォーマンス、スケーラビリティを提供する新しい特別な推論アクセラレータです。 AWS Inferentia2の紹介 AWS Inferentia2は、2019年に発売されたInferentia1の次世代です。Inferentia1のパワーにより、Amazon EC2 Inf1インスタンスは、NVIDIA A10G GPUをベースとしたG5インスタンスと比較して、スループットが25%向上し、コストが70%削減されました。そして、Inferentia2により、AWSは再び限界を em>押し広げています。 新しいInferentia2チップは、Inferentiaと比較してスループットが4倍向上し、レイテンシが10倍低下します。同様に、新しいAmazon…

より小さいほうが良いです:Xeon上で効率的な生成AI体験、Q8-Chat

大規模言語モデル(LLM)は、機械学習の世界を席巻しています。Transformerアーキテクチャのおかげで、LLMはテキスト、画像、ビデオ、オーディオなどの大量の非構造化データから学習する驚異的な能力を持っています。テキスト分類のような抽出型のタスクや、テキスト要約、テキストから画像生成などの生成型のタスクでも非常に優れたパフォーマンスを発揮します。 その名前からもわかるように、LLMは一般的に100億パラメータを超える大規模なモデルです。BLOOMモデルのように1000億パラメータ以上のものもあります。LLMは、検索や対話型アプリケーションなどの低遅延のユースケースで十分に高速な予測を行うために、高性能なGPUに典型的に見られる大量の計算能力を必要とします。残念ながら、多くの組織にとっては関連するコストが高く、最先端のLLMをアプリケーションに使用することが困難になります。 この記事では、Intel CPU上で効率的に実行するために、LLMのサイズと推論レイテンシを減らす最適化技術について説明します。 量子化の基礎 通常、LLMは16ビットの浮動小数点パラメータ(FP16/BF16)でトレーニングされます。したがって、単一の重みまたはアクティベーション値の値を保存するためには2バイトのメモリが必要です。さらに、浮動小数点の演算は整数の演算よりも複雑で遅く、追加の計算能力が必要です。 量子化は、モデルパラメータが取ることができるユニークな値の範囲を縮小することで、両方の問題を解決するモデルの圧縮技術です。たとえば、モデルを8ビット整数(INT8)のような低精度に量子化して、モデルを縮小し、複雑な浮動小数点演算をより単純で高速な整数演算に置き換えることができます。 要するに、量子化はモデルパラメータをより小さな値範囲に再スケーリングします。成功すると、モデルのサイズが少なくとも2倍に縮小され、モデルの精度には影響しません。 量子化は、通常、トレーニング中に適用することができます。これを量子化対応トレーニング(QAT)と呼びますが、一般的に最良の結果が得られます。既存のモデルを量子化する場合は、非常に少ない計算能力を必要とする高速なテクニックであるポストトレーニング量子化(PTQ)を適用することもできます。 さまざまな量子化ツールが利用可能です。たとえば、PyTorchには量子化の組み込みサポートがあります。また、QATおよびPTQのための開発者向けのAPIを備えたHugging Face Optimum Intelライブラリを使用することもできます。 LLMの量子化 最近の研究[1][2]によると、現在の量子化技術はLLMとはうまく機能しません。特に、LLMはすべてのレイヤーとトークンで特定のアクティベーションチャネルに大きな値の外れ値を示します。以下はOPT-13Bモデルの例です。すべてのトークンで、アクティベーションの1つのチャネルが他のすべてのチャネルよりもはるかに大きな値を持っていることがわかります。この現象はモデルのすべてのTransformerレイヤーで見られます。 *出典: SmoothQuant* 現在の最良の量子化技術は、トークン単位でアクティベーションを量子化し、切り捨てられた外れ値または低いマグニチュードのアクティベーションを引き起こします。いずれの解決策もモデルの品質に大きな影響を与えます。さらに、量子化対応トレーニングには追加のモデルトレーニングが必要であり、計算リソースとデータの不足のため、ほとんどの場合には実用的ではありません。 SmoothQuant[3][4]は、この問題を解決する新しい量子化技術です。それは重みとアクティベーションに共同の数学的変換を適用し、アクティベーションの外れ値と非外れ値の比率を減らすことで、Transformerのレイヤーを「量子化に適した」状態にします。これにより、モデルの品質に影響を与えずに8ビットの量子化が可能となります。その結果、SmoothQuantはIntel CPUプラットフォーム上で優れたパフォーマンスを発揮する、より小さく、高速なモデルを生成します。 *出典: SmoothQuant* それでは、SmoothQuantを人気のあるLLMに適用した場合の動作を見てみましょう。 SmoothQuantを使用したLLMの量子化…

bitsandbytes、4ビットの量子化、そしてQLoRAを使用して、LLMをさらに利用しやすくする

LLMは大きいことで知られており、一般のハードウェア上で実行またはトレーニングすることは、ユーザーにとって大きな課題であり、アクセシビリティも困難です。私たちのLLM.int8ブログポストでは、LLM.int8論文の技術がtransformersでどのように統合され、bitsandbytesライブラリを使用しているかを示しています。私たちは、モデルをより多くの人々にアクセス可能にするために、再びbitsandbytesと協力することを決定し、ユーザーが4ビット精度でモデルを実行できるようにしました。これには、テキスト、ビジョン、マルチモーダルなどの異なるモダリティの多くのHFモデルが含まれます。ユーザーはまた、Hugging Faceのエコシステムからのツールを活用して4ビットモデルの上にアダプタをトレーニングすることもできます。これは、DettmersらによるQLoRA論文で今日紹介された新しい手法です。論文の概要は以下の通りです: QLoRAは、1つの48GBのGPUで65Bパラメータモデルをフィントゥーニングするためのメモリ使用量を十分に削減しながら、完全な16ビットのフィントゥーニングタスクのパフォーマンスを維持する効率的なフィントゥーニングアプローチです。QLoRAは、凍結された4ビット量子化された事前学習言語モデルをLow Rank Adapters(LoRA)に逆伝搬させます。私たちの最高のモデルファミリーであるGuanacoは、Vicunaベンチマークで以前に公開されたすべてのモデルを上回り、ChatGPTのパフォーマンスレベルの99.3%に達しますが、1つのGPUでのフィントゥーニングには24時間しかかかりません。QLoRAは、パフォーマンスを犠牲にすることなくメモリを節約するためのいくつかの革新を導入しています:(a)通常分布された重みに対して情報理論的に最適な新しいデータ型である4ビットNormalFloat(NF4)(b)量子化定数を量子化して平均メモリフットプリントを減らすためのダブル量子化、および(c)メモリスパイクを管理するためのページドオプティマイザ。私たちはQLoRAを使用して1,000以上のモデルをフィントゥーニングし、高品質のデータセットを使用した指示の追跡とチャットボットのパフォーマンスの詳細な分析を提供しています。これは通常のフィントゥーニングでは実行不可能である(例えば33Bおよび65Bパラメータモデル)モデルタイプ(LLaMA、T5)とモデルスケールを横断したものです。私たちの結果は、QLoRAによる小規模な高品質データセットでのフィントゥーニングが、以前のSoTAよりも小さいモデルを使用しても最先端の結果をもたらすことを示しています。さらに、ヒューマンとGPT-4の評価に基づいてチャットボットのパフォーマンスの詳細な分析を提供し、GPT-4の評価がヒューマンの評価に対して安価で合理的な代替手段であることを示しています。さらに、現在のチャットボットのベンチマークは、チャットボットのパフォーマンスレベルを正確に評価するための信頼性がないことがわかります。レモンピックされた分析では、GuanacoがChatGPTに比べてどこで失敗するかを示しています。私たちは4ビットトレーニングのためのCUDAカーネルを含む、すべてのモデルとコードを公開しています。 リソース このブログポストとリリースには、4ビットモデルとQLoRAを始めるためのいくつかのリソースがあります: 元の論文 基本的な使用法Google Colabノートブック-このノートブックでは、4ビットモデルとその変種を使用した推論の方法、およびGoogle ColabインスタンスでGPT-neo-X(20Bパラメータモデル)を実行する方法を示しています。 フィントゥーニングGoogle Colabノートブック-このノートブックでは、Hugging Faceエコシステムを使用してダウンストリームタスクで4ビットモデルをフィントゥーニングする方法を示しています。Google ColabインスタンスでGPT-neo-X 20Bをフィントゥーニングすることが可能であることを示しています。 論文の結果を再現するための元のリポジトリ Guanaco 33b playground-または以下のプレイグラウンドセクションをチェック はじめに モデルの精度と最も一般的なデータ型(float16、float32、bfloat16、int8)について詳しく知りたくない場合は、これらの概念の詳細について視覚化を含めた簡単な言葉で説明している私たちの最初のブログポストの紹介を注意深くお読みいただくことをお勧めします。 詳細については、このwikibookドキュメントを通じて浮動小数点表現の基本を読むことをお勧めします。 最近のQLoRA論文では、4ビットFloatと4ビットNormalFloatという異なるデータ型を探求しています。ここでは、理解しやすい4ビットFloatデータ型について説明します。…

Amazon SageMakerのHugging Face LLM推論コンテナをご紹介します

これは、オープンソースのLLM(Large Language Model)であるBLOOMをAmazon SageMakerに展開し、新しいHugging Face LLM Inference Containerを使用して推論を行う方法の例です。Open Assistantデータセットで訓練されたオープンソースのチャットLLMである12B Pythia Open Assistant Modelを展開します。 この例では以下の内容をカバーしています: 開発環境のセットアップ 新しいHugging Face LLM DLCの取得 Open Assistant 12BのAmazon SageMakerへの展開 モデルを使用して推論およびチャットを行う…

Hugging FaceとAMDは、CPUおよびGPUプラットフォーム向けの最先端モデルの高速化に関するパートナーシップを結んでいます

言語モデル、大規模な言語モデル、または基盤モデル、トランスフォーマーは、事前学習、微調整、および推論において大量の計算を必要とします。Hugging Faceは、開発者や組織が最大のパフォーマンスを得るために、ハードウェア企業と協力して、各チップのアクセラレーション機能を活用してきました。 本日、私たちはAMDが正式に私たちのハードウェアパートナープログラムに参加したことをお知らせいたします。私たちのCEOであるClement Delangueが、サンフランシスコで行われたAMDのデータセンターおよびAIテクノロジープレミアで基調講演を行い、このエキサイティングな新しい協力関係を発表しました。 AMDとHugging Faceは、AMDのCPUおよびGPU上で最先端のトランスフォーマーパフォーマンスを提供するために協力しています。このパートナーシップは、Hugging Faceコミュニティ全体にとって非常に良いニュースであり、近々、最新のAMDプラットフォームをトレーニングおよび推論に活用することができるようになります。 長年にわたり、ディープラーニングハードウェアの選択肢は限られており、価格と供給は懸念事項となっています。この新しいパートナーシップは、競争に対抗するだけでなく、市場の動向を緩和するのに役立ちます。さらに、新しいコストパフォーマンスの基準を設定することも期待されます。 サポートされるハードウェアプラットフォーム GPU側では、AMDとHugging Faceはまず、エンタープライズグレードのInstinct MI2xxおよびMI3xxファミリー、次に、カスタマーグレードのRadeon Navi3xファミリーで協力します。AMDの最近のテストでは、MI250が直接競合他社よりもBERT-Largeを1.2倍、GPT2-Largeを1.4倍高速にトレーニングすることを報告しています。 CPU側では、両社はクライアントRyzenおよびサーバーEPYC CPUの推論の最適化に取り組みます。いくつかの以前の投稿で議論したように、CPUはトランスフォーマーの推論において優れたオプションになり得ます。特に、量子化などのモデル圧縮技術と組み合わせた場合です。 最後に、この協力関係には、低い電力要件で驚異的なパフォーマンスを発揮するAlveo V70 AIアクセラレータも含まれます。 サポートされるモデルアーキテクチャとフレームワーク 私たちは、自然言語処理、コンピュータビジョン、音声などの最先端のトランスフォーマーアーキテクチャ(BERT、DistilBERT、ROBERTA、Vision Transformer、CLIP、Wav2Vec2など)をサポートする予定です。もちろん、生成型AIモデル(GPT2、GPT-NeoX、T5、OPT、LLaMAなど)、私たち自身のBLOOMおよびStarCoderモデルも利用可能です。最後に、ResNetやResNextのようなより伝統的なコンピュータビジョンモデル、そして深層学習の推薦モデルにも初めて対応します。 これらのモデルをPyTorch、TensorFlow、およびONNX Runtime向けに上記のプラットフォームでテストおよび検証するために最善を尽くします。すべてのモデルが、すべてのフレームワークまたはすべてのハードウェアプラットフォームでトレーニングおよび推論に利用可能であるわけではないことを覚えておいてください。 今後の展望…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us