Learn more about Search Results A - Page 13
- You may be interested
- ディフューザを使用してControlNetをトレ...
- 「ChatGPTを利用する5人のミリオネア」
- あなたのデータが適切にモデル化されてい...
- プロンプトアンサンブルはLLMをより信頼性...
- 「AIが医療におけるケースの結果を向上さ...
- ジャバとデータエンジニアリング
- ビジネス戦略において機械学習を使用する...
- 「生成AIにおけるバイアスの軽減」
- 「包括的な時系列探索的分析」
- 「Zero123++:一枚の画像から一貫したマル...
- 「プロジェクトマネージャーが効率を向上...
- 「3つの医療機関が生成型AIを使用している...
- AI教育の追求 – 過去、現在、そして...
- 「Appleの研究者が、ポーズされた画像から...
- 大規模言語モデルの高速推論:Habana Gaud...
マイクロソフトAIがLLMLinguaを発表:大型言語モデル(LLM)の高速推論のためのユニークなクイック圧縮テクニックでプロンプトを圧縮
大規模言語モデル(LLM)は、その高い一般化能力と推論能力により、人工知能(AI)コミュニティを大きく押し上げています。これらのモデルは非常に優れた能力を持ち、自然言語処理(NLP)、自然言語生成(NLG)、コンピュータビジョンなどの能力を示しています。ただし、インコンテキスト学習(ICL)やチェーン・オブ・ソート(CoT)プロンプトなどの新しい展開は、数万トークン以上にも及ぶ長いプロンプトの展開を引き起こしています。これは、費用対効果と計算効率の観点からモデル推論に問題を提起しています。 これらの課題に対処するため、Microsoft Corporationの研究チームは、LLMLinguaというユニークな粗いから細かい圧縮技術を開発しました。LLMLinguaは、長いプロンプトの処理に関連する費用を最小限に抑え、モデルの推論を迅速化することを主な目的として開発されました。これを達成するために、LLMLinguaは以下のいくつかの重要な戦略を使用しています。 予算コントローラー:動的予算コントローラーを作成しました。これにより、圧縮比が元のプロンプトのさまざまな部分に均等に分配されるようになります。これにより、大きな圧縮比でもプロンプトの意味的な整合性が維持されます。 トークンレベルの反復圧縮アルゴリズム:トークンレベルの反復圧縮アルゴリズムがLLMLinguaに統合されています。この技術により、圧縮要素間の相互依存関係を捉えながら、プロンプトの重要な情報を維持したより高度な圧縮が可能となります。 指示チューニングベースのアプローチ:チームは、言語モデル間の分布の不整合問題に対処するために、指示チューニングベースのアプローチを提案しました。言語モデルの分布を整合させることで、迅速な圧縮に使用される小さな言語モデルと意図されたLLMの互換性が向上します。 チームは、LLMLinguaの有用性を検証するために、理論的なデータセットとしてGSM8KとBBHを、会話用データセットとしてShareGPTを、要約用データセットとしてArxiv-March23を使用して分析と実験を行いました。結果は、提案アプローチが各状況で最新技術のパフォーマンスを達成していることを示しました。結果は、圧縮比20倍までの大幅な圧縮を可能にする一方でパフォーマンスの面でわずかな犠牲を払いました。 実験で使用された小規模言語モデルはLLaMA-7Bであり、閉じたLLMはGPT-3.5-Turbo-0301でした。LLMLinguaは、推論、要約、議論のスキルを維持しながら最大圧縮比20倍でも従来の圧縮技術を上回り、弾力性、経済性、効率性、回復性を備えています。 LLMLinguaの効果は、さまざまな閉じたLLMと小規模言語モデルで観察されました。LLMLinguaは、GPT-2-smallを使用した場合には大きなモデルとほぼ同等のパフォーマンス結果を示しました。また、予想される迅速な結果を上回る強力なLLMでも成功を収めました。 LLMLinguaの回復性は、圧縮されたプロンプトを元に戻す際に重要な推論情報を効果的に取り出すことによって示されます。完全な9ステップのCoTプロンプトを復元するために使用されたGPT-4は、圧縮されたプロンプトの意味と類似を保ちながら重要な情報を取り戻しました。この機能により、LLMLinguaは回復性を保証し、翻訳後も重要な情報を保持し、LLMLingua全体の印象を高めています。 結論として、LLMLinguaはLLMアプリケーションにおける長いプロンプトによって引き起こされる困難に包括的な解決策を提供しました。この方法は優れたパフォーマンスを示し、LLMベースのアプリケーションの効果とコスト効率を向上させる有用な方法を提供しています。
開発者や企業のためのジェミニAPIとさらに新しいAIツール
「ジェミニAPIおよびそれ以外にも4つのAIツール、Imagen 2、MedLM、開発者向けのDuet AI、セキュリティオペレーション向けのDuet AIを介してジェミニプロを展開します」
Amazon BedrockとAmazon Transcribeを使用して、生成AIを使用して録音のサマリーを作成します
「会議のメモは共同作業の重要な一部ですが、しばしば見落とされてしまいます討論を主導し、注意深く聞きながらメモを取ることは、重要な情報が記録されずに逃げてしまうことが簡単ですメモが取られていても、整理されていないか、読みづらいことがあり、無意味になってしまうこともありますこの記事では、Amazonを使った効果的なメモの使い方について探っています」
「AIは詐欺検出にどのように使われていますか?」
西部劇にはガンスリンガー、銀行強盗、賞金が存在しましたが、今日のデジタルフロンティアではアイデンティティ盗難、クレジットカード詐欺、チャージバックが広まっています。 金融詐欺による収益は、数十億ドル規模の犯罪企業となっています。詐欺師の手に渡る「生成AI」は、これをさらに収益化することを約束します。 世界的には、2026年までにクレジットカードによる損失は430億ドルに達する見込みです。これはニルソン・レポートによるものです。 金融詐欺は、ハッキングされたデータをダークウェブから収集してクレジットカードの盗難に利用するなど、さまざまな手法で行われます。「生成AI」を用いて個人情報をフィッシングする場合もあり、仮想通貨、デジタルウォレット、法定通貨間での資金洗浄も行われています。デジタルの裏世界にはさまざまな金融詐欺が潜んでいます。 対応するために、金融サービス企業は詐欺検出にAIを活用しています。なぜなら、これらのデジタル犯罪の多くはリアルタイムで停止し、消費者や金融企業がすぐに損失を止める必要があるからです。 では、詐欺検出にはAIはどのように活用されているのでしょうか? 詐欺検出のためのAIは、顧客の行動と関連、アカウントのパターンや詐欺特性に合致する行動の異常を検出するために、複数の機械学習モデルを使用しています。 生成AIは詐欺の共同パイロットとして活用できる 金融サービスの多くはテキストと数字を扱うものです。生成AIや大規模言語モデル(LLMs)は、意味と文脈を学習する能力を持ち、新しいレベルの出力と生産性を約束するため、産業全体に破壊的な能力をもたらします。金融サービス企業は、生成AIを活用してより賢明かつ能力の高いチャットボットを開発し、詐欺検出を改善することができます。 一方で、悪意のある者は巧妙な生成AIのプロンプトを使用してAIのガードレールを回避し、詐欺に利用することができます。また、LLMsは人間のような文章を生成することができ、詐欺師はタイプミスや文法の誤りのない文脈に沿ったメールを作成することができます。さまざまなバリエーションのフィッシングメールを素早く作成することができるため、生成AIは詐欺行為を実行するための優れた共同パイロットとなります。詐欺GPTなど、生成AIをサイバー犯罪に悪用するためのダークウェブツールもあります。 生成AIは声認証セキュリティにおける金融被害にも悪用されることがあります。一部の銀行は声認証を使用してユーザーを認証しています。攻撃者がボイスサンプルを入手することができれば、ディープフェイク技術を使用して銀行の顧客の声をクローンすることができ、このシステムを破ろうとします。声データは、スパムの電話で集めることができます。 チャットボットの詐欺は、LLMsやその他の技術を使用して人間の行動をシミュレートすることに対する懸念があります。これらはインポスター詐欺や金融詐欺に応用されるディープフェイクビデオと音声クローンのためのものです。米国連邦取引委員会はこの問題に対して懸念を表明しています。 生成AIは不正使用と詐欺検出にどのように取り組んでいるのか? 詐欺審査には強力な新しいツールがあります。マニュアル詐欺審査を担当する従業員は、ポリシードキュメントからの情報を活用するために、バックエンドでRAGを実行するLLMベースのアシスタントのサポートを受けることができます。これにより、詐欺事件がどのようなものかを迅速に判断し、プロセスを大幅に加速することができます。 LLMsは、顧客の次の取引を予測するために採用されており、支払い企業は事前にリスクを評価し、詐欺取引をブロックすることができます。 生成AIはまた、トランザクション詐欺を撲滅するために精度を向上させ、レポートを生成し、調査を減らし、コンプライアンスリスクを軽減するのに役立ちます。 不正防止のための生成AIの重要な応用例の1つとして、「合成データ」の生成があります。合成データは、詐欺検出モデルのトレーニングに使用するデータレコードの数を増やし、詐欺師が最新の手法を認識するための例のバラエティと洗練度を高めることができます。 NVIDIAは、生成AIを活用してワークフローを構築し、情報検索のために自然言語プロンプトを使用するチャットボットと仮想エージェントを作成するためのツールを提供しています。 NVIDIAのAIワークフローを活用することで、様々なユースケースに対して正確な応答を生成するためのエンタープライズグレードの機能を迅速に構築し、展開することができます。これには、ファウンデーションモデル、NVIDIA NeMoフレームワーク、NVIDIA Triton Inference Server、GPUアクセラレートベクトルデータベースが使用され、RAGによって強化されたチャットボットが展開されます。 安全性に焦点を当てた産業では、悪用されにくいように生成AIを保護するための取り組みが行われています。NVIDIAはNeMoガードレールをリリースし、OpenAIのChatGPTなどのLLMsによって動作するインテリジェントアプリケーションが正確で適切、トピックに即して安全であることを確保するために役立てています。…
最高のAWSコース(2024年)
クラウドコンピューティングのスキルを向上させるための最高のAWSコースを見つけましょうアーキテクチャ、DevOps、およびキャリア構築のコースで基礎を学び、認定試験の準備をし、実践的な経験を積みましょう
「AIが思考をテキストに変える」
「持ち運び可能で非侵襲的なシステムは、個人の思考をテキストに変換することができます」
「NOAAの古い地球観測衛星が「延長寿命」を得ます」
国立海洋大気庁は、廃止が予定されている極軌道衛星の寿命を延ばすために、クラウドベースのシステムを使用します
「GPTの力を解き放つ:ReactJSでOpenAIのGPTを実装するための包括的なガイド」
この包括的なガイドでは、ReactJSでのGPTの実装について詳しく掘り下げ、開発者に開かれた複雑さと可能性を探ります
AIとMLによる株式取引の革命:機会と課題
「AI/MLは、予測分析、効率性、市場適応性と倫理の課題を通じて株式取引を変革し、Pythonの例を示す」となります
「設定パラメータを使用して、ChatGPTの出力を改善する方法」
最近、私はManning Publicationsから出版されたDavid Clintonの「The Complete Obsolete Guide to Generative AI」という非常に興味深い本を読んでいます第2章では、著者は...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.