Learn more about Search Results 6 - Page 13

VoAGIニュース、6月28日:データサイエンスのチートシートのための10のChatGPTプラグイン • データ分析を自動化するChatGPTプラグイン

データサイエンスのチートシートのための10のChatGPTプラグイン • Noteableプラグイン:データ分析を自動化するChatGPTプラグイン • 無料でClaude AIにアクセスする方法は3つあります • ベクトルデータベースとは何か、なぜLLMにとって重要なのか • データサイエンティストのための探索的データ分析の必須ガイド

Meet ChatGLM2-6B:オープンソースのバイリンガル(中国語-英語)チャットモデルChatGLM-6Bの第2世代バージョンです

OpenAIの革命的なChatGPTの導入以来、自然言語対話エージェントの分野ではかなりの進歩が見られています。研究者たちは、チャットボットモデルの能力を向上させ、ユーザーとのより自然で魅力的な対話を作成できるようにするために、さまざまな技術と戦略を積極的に探求しています。その結果、ChatGPTの代替となるいくつかのオープンソースで軽量なモデルが市場に登場しています。その中の1つが、中国の清華大学の研究者によって開発されたChatGLMモデルシリーズです。このシリーズは、一般言語モデル(GLM)フレームワークをベースにしており、より一般的に見られるGenerative Pre-trained Transformer(GPT)グループのLLMとは異なります。このシリーズには、中国語と英語のバイリンガルモデルがいくつか含まれており、最もよく知られているのはChatGLM-6Bです。このモデルは62億のパラメータを持ち、1兆以上の英語と中国語のトークンで事前学習され、強化学習などの技術を用いて中国語の質問応答、要約、対話タスクにさらに微調整されています。 ChatGLM-6Bのもう1つの特徴は、その量子化技術により、ローカルで展開されることができ、非常に少ないリソースしか必要としないことです。モデルは、消費者向けのグラフィックスカードでもローカルに展開することができます。このモデルは特に中国で非常に人気があり、世界中で200万回以上ダウンロードされ、最も影響力のある大規模なオープンソースモデルの1つとなっています。その広範な採用の結果、清華大学の研究者はバイリンガルチャットモデルの第2世代バージョンであるChatGLM2-6Bをリリースしました。ChatGLM2-6Bは、第1世代モデルのすべての強みに加えて、パフォーマンスの向上、より長いコンテキストのサポート、より効率的な推論など、いくつかの新機能が追加されています。さらに、研究チームはモデルの重みの使用を学術目的に留まらず(以前に行われていたように)、商業利用にも利用できるように拡張しました。 研究者たちは、ChatGLM2-6Bのベースモデルを第1世代バージョンと比較して向上させることから始めました。ChatGLM2-6Bは、GLMのハイブリッド目的関数を使用し、1.4兆以上の英語と中国語のトークンで事前学習されました。研究者たちは、市場のほぼ同じサイズの他の競合モデルとのパフォーマンスを評価しました。その結果、ChatGLM2-6Bは、MMLU、CEval、BBHなどのさまざまなデータセットで顕著なパフォーマンスの向上を実現していることが明らかになりました。ChatGLM2-6Bが示したもう1つの印象的なアップグレードは、前バージョンの2Kから32Kまでのより長いコンテキストのサポートです。FlashAttentionアルゴリズムがこの点で重要な役割を果たし、より長いシーケンスに対してアテンションの高速化とメモリ使用量の削減を実現しました。さらに、モデルは対話のアライメント中に8Kのコンテキスト長でトレーニングされており、ユーザーにより多様な会話の深さを提供しています。ChatGLM2-6Bはまた、Multi-Query Attention技術を使用しており、KVキャッシュのGPUメモリ使用量が低下し、第1世代と比較して推論速度が約42%向上しています。 清華大学の研究者たちは、ChatGLM2-6Bをオープンソース化し、LLMの成長とイノベーションを促進し、そのモデルを基にしたさまざまな有用なアプリケーションの開発を世界中の開発者と研究者に呼びかけることを望んでいます。ただし、研究者たちは、モデルの規模が小さいため、その決定はしばしばランダムに影響を受ける可能性があること、その出力は正確性を慎重に確認する必要があることを強調しています。将来の作業に関しては、チームは一歩先を見越して、モデルの第3バージョンであるChatGLM3の開発を始めています。

トップ投稿6月19日〜25日:無料でGPT-4にアクセスする3つの方法

無料でGPT-4にアクセスする3つの方法 • データ分析を自動化するChatGPTプラグインの注目すべき点 • 無料でClaude AIにアクセスする3つの方法 • データサイエンティストのための探索的データ分析の必須ガイド • ベクトルデータベースとは何か、そしてLLMにとってなぜ重要なのか?

Gmailを効率的なメールソリューションに変える6つのAI機能

GoogleのGmailは、人工知能(AI)の力を活用してユーザーエクスペリエンスを向上させることに最前線で取り組んでいます。AIをプラットフォームに統合する歴史を持ち、Gmailは進化を続け、電子メールの管理を簡素化し、コミュニケーションを効率化する機能を提供しています。この記事では、Gmailを世界中のユーザーにとって必須のツールにする6つのAI機能を探究します。 1. 「書き方を教えて」: Gmailの最新機能である「書き方を教えて」機能は、シンプルなプロンプトに基づいて完全なメールの下書きを生成し、ユーザーが簡単にメールを作成することができるようにします。Workspace Labsプログラムを介してアクセスできるこの機能により、生成的AI言語モデルを活用して、ユーザーは自分の好みに応じてメールを磨き、カスタマイズ、調整することができます。また、このツールは、以前の会話から詳細を抽出し、文脈に沿ったアシストを提供することもできます。 2. Smart Compose: Smart Composeは、ユーザーがタイプする間に文言のオプションを提案することで、メール作成を革命化します。 Tensor Processing Units (TPUs) 上で動作するこのハイブリッド言語生成モデルにより、ユーザーは「Tab」ボタンを1回タップするだけで提案されたフレーズや文章を自分の下書きに組み込むことができます。効率性を向上させるだけでなく、Smart Composeは新しい英語、スペイン語、フランス語、イタリア語のフレーズを提示することによって言語学習者を支援します。 3. Smart Reply: GmailのSmart Reply機能は、受信したメッセージに対して文脈に沿った最大3つの返信を提供することで、メールのコミュニケーションを加速します。深層ニューラルネットワークを含む高度な機械学習技術によって動作するSmart Replyは、単純な「はい」または「いいえ」の回答を超えた微妙なオプションを提供します。ユーザーは迅速に適切な返信を選択して送信することができ、時間と労力を節約することができます。Smart Replyは、ユーザーのコミュニケーションスタイルに適応し、パーソナライズを向上させます。 4.…

DeepMindのAIマスターゲーマー:2時間で26のゲームを学習

強化学習は、Google DeepMindの中核的な研究分野であり、AIを用いて実世界の問題を解決するための膨大な可能性を秘めています。しかし、そのトレーニングデータとコンピューティングパワーの非効率性は、重大な課題を引き起こしています。DeepMindは、MilaとUniversité de Montréalの研究者と協力して、これらの制限に対抗するAIエージェントを導入しました。このエージェントは、Bigger, Better, Faster(BBF)モデルとして知られており、わずか2時間で26のゲームを学習しながらAtariベンチマークで超人的なパフォーマンスを達成しました。この驚異的な成果は、効率的なAIトレーニング方法の新たな道を開き、RLアルゴリズムの将来的な進歩の可能性を解き放ちます。 詳細はこちらをご覧ください:DataHack Summit 2023のワークショップで、最新のAI技術を使用して強化学習の信じられないほどの可能性を解き放ち、実世界の課題に取り組んでください。 強化学習の効率課題 強化学習は、複雑なタスクに取り組むための有望なアプローチとして長年認識されてきました。しかし、従来のRLアルゴリズムは、実用的な実装を妨げる非効率性に苦しんでいます。これらのアルゴリズムは、大量のトレーニングデータと膨大なコンピューティングパワーを要求し、リソースを消費し、時間を要します。 また読む:強化学習の包括的なガイド Bigger, Better, Faster(BBF)モデル:人間を凌駕する DeepMindの最新のブレイクスルーは、Atariベンチマークでの卓越したパフォーマンスを発揮したBBFモデルから来ています。以前のRLエージェントはAtariゲームで人間を超えていましたが、BBFの特筆すべき点は、人間のテスターが利用可能な時間枠と同等の2時間のゲームプレイ内で、このような印象的な結果を達成したことです。 モデルフリー学習:新しいアプローチ BBFの成功は、ユニークなモデルフリー学習アプローチに帰することができます。ゲーム世界との相互作用を通じて受け取った報酬と罰に依存することにより、BBFは明示的なゲームモデルを構築する必要を回避します。この簡素化されたプロセスにより、エージェントは学習とパフォーマンスの最適化に集中し、より迅速かつ効率的なトレーニングが可能になります。 また読む:OpenAIとTensorFlowを使用した人間のフィードバックで強化学習を強化する トレーニング方法と計算効率の向上 BBFの急速な学習の成果は、いくつかの重要な要因によるものです。研究チームは、より大きなニューラルネットワークを採用し、自己モニタリングトレーニング方法を改良し、効率を向上させるための様々な技術を実装しました。特に、BBFは、以前のアプローチと比較して必要な計算リソースを減らすことができる、単一のNvidia A100 GPUでトレーニングすることができます。 進歩のベンチマーク:RLの進歩のための足がかり…

あなたの時間を節約するための6つのGmail AI機能

これらの人工知能(AI)によるGmailの機能は、あなたの電子メールの体験をよりスピーディーで整理されたものにすることができます

新時代の幕開け:「エイジ オブ エンパイア」シリーズがGeForce NOWに参加、6月に20タイトルがリリース予定

暑い太陽と長い日々の季節がやってきました。そんな時は、6月にGeForce NOWに参加する20のゲームで、この夏は家の中にいましょう。また、プールで、おばあちゃんの家や車の中など、どこでもストリーミングできます。どちらの方法でも、GeForce NOWが対応します。 次のXboxゲームとして、Age of EmpiresシリーズのタイトルがGeForce NOWに登場します。GeForce NOWライブラリの1,600以上のゲームの中から、この夏たくさん楽しむことができます。 帝国を拡大する 石器時代からクラウドまで。 NVIDIAは先月、Microsoftとの協力関係の一環として、最初のXboxゲームをクラウドにリリースしました。今度は、Ensemble StudiosのAge of Empiresシリーズのアクションゲームをクラウドに取り込む最初の人になりました。 1997年の最初のリリース以来、Age of Empiresは、最も長く続くリアルタイムストラテジーシリーズの1つとして確立されています。この高評価のRTSシリーズは、プレイヤーが拡大して繁栄する文明を目指して、帝国全体を制御することを目的としています。 フランチャイズの最新のSteamバージョン4つが、GeForce NOWライブラリに後日追加されます。それぞれのタイトルは、Age of Empires: Definitive Edition、Age of…

VoAGIニュース、6月7日:データサイエンス面接チートシートのためのChatGPT • 特定のデータロール向けのプログラミング言語

ChatGPTによるデータサイエンス面接のチートシート • 特定のデータロールに対するプログラミング言語 • データサイエンティストのための10のJupyterノートブックのヒントとトリック • PandasGUIでデータ分析を革新する • OpenAIのWhisper APIによるトランスクリプションと翻訳

VoAGIニュース、6月14日:あなたの無料のローカルチャットGPT、GPT4All!• Falcon LLM:オープンソースのキング

GPT4Allは、あなたのドキュメントのためのローカルチャットGPTであり、無料です! • Falcon LLM:オープンソースLLMの新しい王様 • ReactPyの始め方 • データストーリーテリングの技術をマスターする:データサイエンティストのためのガイド • より速いデータの取得のためのSQLクエリの最適化方法

2023年の最高の6つの人工知能(AI)ETF

ETFはAIに投資する便利で多様化された方法を提供します2023年最高の6つの人工知能(AI)ETFを探ってみましょう

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us