Learn more about Search Results 16 - Page 13
- You may be interested
- 効果的な小規模言語モデル:マイクロソフ...
- 「REPLUG」をご紹介しますこれは、凍結さ...
- 「AIプログラムがイスラエルの男性の命を...
- 「FalconAI、LangChain、およびChainlitを...
- 「NLP(スクラッチからのdoc2vec)&クラ...
- 「データサイエンスの求職活動を諦める」
- 「ML(Machine Learning)製品に自信を持...
- 「プリントオンデマンドのドロップシッピ...
- カスタムデータセットでセマンティックセ...
- 「OpenAIキーなしでPDFおよび記事のための...
- マウス用のVRゴーグルは、脳研究のために...
- トップ投稿 7月31日〜8月6日:ChatGPTを忘...
- 「アマゾンはAIによって書かれた本の到来...
- 夢と現実の間:生成テキストと幻覚
- デブセコプス:セキュリティをデブオプス...
サイバーセキュリティが食品と農業を守る
サイバー攻撃から米国の食料供給を保護する
「AIと働き方の未来:AI時代における労働力の再教育」
AIは私たちの働き方を変えつつあり、それは想像以上の速さで進行しています毎週1億人以上が既にChatGPTを利用しており、半数以上の従業員がAIツールを仕事で使用していると回答しています確かにAIは特定の人々が仕事をより良く遂行するのに役立つでしょうが、多くの人々は未だに使用方法や利点について疑問を抱いています...
「Pythonもしもでないの場合:コード内の条件文を簡素化する方法」
「Pythonのif not文は、プログラムのフローを制御するための強力なツールです特定の条件が偽であるかどうかをテストしたり、条件式の結果を反転させるためによく使用されますこのセクションでは、if not文の構文と例について探求します...」
「みんなのためのLLM:ランニングLangChainとMistralAI 7BモデルをGoogle Colabで」
『誰もが大規模言語モデルは、定義通り大規模であることを知っていますそして、それもつい最近までは高性能なハードウェアの所有者または少なくともクラウドアクセスのために支払った人々にのみ利用可能でした...』
機械学習を革新する:たった7行のコードでAutoGluonを使ってKaggleのトップ4%を達成
Slalom _buildで新しいデータエンジニアリングの役割を始めてから、数年前のMLの経験を最新化する必要があることに気付きましたデータエンジニアリング/データの経験を積んでから数年が経ちましたが...
パフォーマンスの向上と最適化されたリソース使用のためのダイナミックなLoRAローディング
私たちは、拡散モデルに基づくLoRAのハブ内の推論速度を大幅に高速化することができました。これにより、計算リソースを節約し、より良いユーザーエクスペリエンスを提供することができました。 モデルへの推論を行うには、2つのステップがあります: ウォームアップフェーズ – モデルのダウンロードとサービスのセットアップ(25秒)。 推論ジョブ自体(10秒)。 これらの改善により、ウォームアップ時間を25秒から3秒に短縮することができました。数百の異なるLoRAに対する推論を、たった5つのA10G GPU以下で提供することができます。さらに、ユーザーリクエストへの応答時間は35秒から13秒に短縮されました。 一つのサービスで多くの異なるLoRAを動的に提供するために、Diffusersライブラリで開発された最近の機能を活用する方法についてもっと話しましょう。 LoRA LoRAは「パラメータ効率」(PEFT)メソッドの一環である、微調整技術です。このメソッドは、微調整プロセスによって影響を受けるトレーニング可能なパラメータの数を減らすことを試みます。微調整の速度を高めながら、微調整済みチェックポイントのサイズを減らすことができます。 モデルの全ての重みに微小な変更を行うことによってモデルを微調整する代わりに、ほとんどの層を固定し、注意ブロック内の特定の一部の層のみをトレーニングします。さらに、これらの層のパラメータに触れず、二つの小さな行列の積を元の重みに加えることで、これらの層のパラメータを更新します。これらの小さな行列は微調整プロセス中に更新され、ディスクに保存されます。これにより、元のモデルのパラメータはすべて保存され、適応方法を使用してLoRAの重みを上にロードすることができます。 LoRA(Low Rank Adaptation)という名前は、先ほど言及した小さな行列から来ています。このメソッドについての詳細は、この記事または元の論文をご覧ください。 上記の図は、LoRAアダプタの一部として保存される二つの小さなオレンジ色の行列を示しています。後でこれらのLoRAアダプタをロードし、青いベースモデルと結合して黄色の微調整モデルを取得することができます。重要なことは、アダプタをアンロードすることも可能なので、いつでも元のベースモデルに戻すことができるということです。 言い換えると、LoRAアダプタは、必要に応じて追加および削除が可能なベースモデルのアドオンのようなものです。AとBの小さなランクのため、モデルサイズと比較して非常に軽量です。したがって、ロード時間は全体のベースモデルをロードするよりもはるかに高速です。 例えば、多くのLoRAアダプタのベースモデルとして広く使用されているStable Diffusion XL Base 1.0モデルリポジトリを見ると、そのサイズは約7 GBです。しかし、このモデルのような典型的なLoRAアダプタは、わずか24 MBのスペースしか使用しません!…
「MMMUと出会おう:専門家レベルのマルチモーダルなチャレンジに向けたAIベンチマークで人工知能の一般的な発展への道筋をつける」
マルチモーダルプリトレーニングの進歩は、LXMERT、UNITER、VinVL、Oscar、VilBert、VLPなどのモデルに示されるように、さまざまなタスクに対応しています。 FLAN-T5、Vicuna、LLaVAなどのモデルは、指示に従う能力を向上させます。 Flamingo、OpenFlamingo、Otter、MetaVLのような他のモデルは、文脈を持った学習を探求します。 VQAのようなベンチマークは認識に焦点を当てますが、MMMは大学レベルの問題における専門家レベルの知識と緻密な推論を要求することで際立っています。包括的な知識カバレッジ、さまざまな画像形式、および既存のベンチマークとは異なる主題特化の推論に対する独自の強調点といった特徴があります。 MMMベンチマークは、IN.AI Research、ウォータールー大学、オハイオ州立大学、インディペンデント、カーネギーメロン大学、ビクトリア大学、プリンストン大学などの様々な組織の研究者によって提案され、さまざまな学問をカバーする大学レベルの問題が含まれています。専門家レベルの認識と推論を重視したこのベンチマークは、現行のモデルにとって大きな課題を提示します。 この研究では、人間の能力を超えるExpert AGIに向けた進歩を評価するためのベンチマークの必要性が強調されています。MMLUやAGIEvalなどの現行の基準はテキストに焦点を当てており、より多様なモーダルな課題が必要です。大規模なマルチモーダルモデル(LMMs)は有望でありますが、既存のベンチマークには専門家レベルのドメイン知識が必要です。MMMベンチマークはこのギャップを埋めるために導入され、複雑な大学レベルの問題に多様な画像形式と交差するテキストを特徴としています。これはLMMsにとって高度なAI能力を目指す難しい評価を要求し、専門家レベルの認識と推論を提供します。 Expert AGI評価のために設計されたMMMベンチマークは、6つの学問と30の科目にわたる11.5Kの大学レベルの問題で構成されています。データ収集は、視覚入力に基づいてトピックを選択し、学生のアノテータを参加させてマルチモーダルな質問を収集し、品質管理を実施することによって行われます。LLMsやLMMsを含む複数のモデルは、MMMベンチマークでゼロショットの設定で評価され、微調整やフューショットデモなしで正確な回答を生成する能力がテストされます。 MMMベンチマークは、GPT-4Vが55.7%の精度しか達成できないため、モデルにとって困難です。専門家レベルの認識と推論の要求により、LLMsやLMMsにとって厳しい評価となります。エラー分析により、視覚的な認識、知識表現、推論、およびマルチモーダル理解の課題が明らかになり、さらなる研究の領域が示唆されます。30種類の多様な画像形式で大学レベルの知識をカバーするMMMベンチマークは、基礎モデルの精度と専門分野での適用性を高めるためにドメイン固有の知識をトレーニングデータセットに豊かにすることの重要性を強調しています。 まとめると、MMMベンチマークの作成はExpert AGIの評価においてLMMsの重要な進展を表しています。このベンチマークは、現行のモデルに基本的な感覚スキルと複雑な推論を評価する機会を提供し、Expert AGI開発の進歩を理解するのに役立ちます。専門家レベルのパフォーマンスと推論能力を重視し、視覚的な認識、知識表現、推論、およびマルチモーダル理解におけるさらなる研究の領域をハイライトします。専門分野の精度と適用可能性を向上させるために、トレーニングデータセットにドメイン固有の知識を豊かにすることが推奨されます。
「Pythonで座標からサイトの距離行列を計算する」
現在の記事は、スプリント3が終わったところから旅を続けますここで、スプリント4ではモデリングから少し逸れて、ジオスペーシャル機能を持つクラスを開発しますそれは非常に...
リトリーバル オーグメンテッド ジェネレーション(RAG)推論エンジンは、CPU上でLangChainを使用しています
「リトリーバル増強生成(RAG)は広範にカバーされており、特にチャットベースのLLMへの応用については詳しく語られていますが、本記事では異なる視点からそれを見て、その分析を行うことを目指しています...」
「34%高速な整数から文字列への変換アルゴリズム」
コンピュータプログラミングにおいて、与えられた整数を文字列に変換することは一般的な操作ですこれは、例えば整数を画面に表示する前や、テキスト形式の任意の場所に表示する前に行うべきです...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.