Learn more about Search Results 結論 - Page 13

「このAI研究は、姿勢オブジェクト認識を次のトークン予測として新しいアプローチを提案します」という意味です

どのようにして効果的に物体認識にアプローチできるのでしょうか? Meta AIとメリーランド大学の研究チームは、画像埋め込みからテキストトークンを予測してラベルを形成するために言語デコーダを利用する新しい手法を開発し、物体認識の問題に取り組みました。また、パフォーマンスを損なうことなく、より効率的なデコーダの作成戦略も提案しました。 深層学習時代以前から存在した物体認識は、画像注釈に貢献してきました。領域のスライシングや単語の予測などの手法を用いて、領域と単語を語彙に基づいて結びつけました。画像とテキストを共有空間に共同埋め込みすることで、画像とテキストのマッチングに取り組み、フレーズのグラウンディングを強調しました。画像注釈はトピックモデルからトランスフォーマベースのアーキテクチャへ進化しました。GPTやLLaMAなどの言語モデルは視覚認識に貢献し、検出、フューショット認識、説明、推論などに応用されました。言語モデルからの建築的な概念、例えばプレフィックスのアイデアなどは、ビジョン-言語ドメインで影響を与え、探索されてきました。 この研究は、画像エンコーダが埋め込みを生成し、言語デコーダが物体のラベルを予測するフレームワークを導入することによって、コンピュータビジョンにおける物体認識に取り組んでいます。従来の固定埋め込みを持つ従来の手法とは異なり、提案手法では認識を次のトークンの予測として扱い、画像の埋め込みからタグの自己回帰的なデコーディングを可能にします。この手法により、事前に定義されたラベルの必要性がなくなり、柔軟で効率的な認識が促進されます。非因果的な注意マスクやコンパクトなデコーダなどの主要な革新は、パフォーマンスを損なうことなく効率を向上させ、コンピュータビジョンにおける物体認識への新しい解決策を提供します。 研究では、次のトークン予測に基づく物体認識に関する手法を提案し、画像埋め込みからテキストトークンを予測してラベルを作成する言語デコーダを使用します。デコーダは非因果的な注意マスクを組み込んで自己回帰を行い、画像トークンをプレフィックスとして扱います。推論時には、複数のラベルから並列トークンサンプリングを行い、確率に基づいてランキングします。効率性のために、事前学習された言語モデルから中間ブロックを削除するコンパクトなデコーダ構築戦略が提案されていますが、パフォーマンスは保持されます。 研究はCLIP、Open Flamingo、LLaVA、BLIP-2、InstructBLIP、CaSEDと比較し、トップ-kの予測と適合率-再現率曲線を評価しています。提案手法はトップ10の予測で競合他社を一貫して上回り、ラベル生成の優れた関連性を示しています。適合率-再現率曲線は強い線形相関を示し、kが増加するにつれて高い再現率が得られ、データセット全体で予測品質が向上していることを示唆しています。デコーダの切り詰めによる摘出解析に関する研究では、CC3Mではわずかなパフォーマンスの低下が見られましたが、COCOとOpenImagesでは変化がありませんでした。これは、物体認識のための初期のLLaMA 7Bモデルブロックの重要性を強調し、よりコンパクトなデコーダのために11番目以降のブロックを削除することを示しています。 結論として、提案された次のトークン予測を活用した自己回帰的な物体認識手法は、データセット全体でトップ10の予測を生成する他の手法よりも優れた関連性を示しています。適合率-再現率曲線で観察される強い線形相関は、すべてのテストデータセットで予測品質が向上していることを示唆しています。デコーダの切り詰めに関する摘出解析の研究では、CC3Mではわずかなパフォーマンスの低下が見られましたが、COCOとOpenImagesでは変化がありませんでした。また、LLaMAモデルの中間トランスフォーマーブロックを削除することで、よりコンパクトなデコーダが得られ、パフォーマンスも保持されました。これは、物体認識においてLLMの一部の知識の重要性を強調しています。 さらなる研究では、一回のサンプリングでの競合の懸念に対処するため、緩和策を探索することに焦点を当てることができます。他の可能性としては、事前に定義されたサブセットや参照ピボットなしで、特にLLMと物体認識を直接的に結びつける生成モデルの直接のアライメントを調査することがあります。また、訓練データのボリュームを大幅に増やして、未知のデータや概念を解釈または認識するための依存度を減らす効果を検証することも有益であり、時間の経過とともに新しいラベルを増やしていくオープンワールドのパラダイムと一致しています。

「Power BI ビジュアライゼーションの究極ガイド」

イントロダクション Power BIは、データサイエンスの中でも強力なツールとして浮上しており、データに基づく洞察に根ざした情報を提供することで、企業が情報に基づいた意思決定を行うことを可能にしています。Microsoftによって開発されたPower BIビジュアライゼーションは、ユーザーがデータを視覚的に表現し、洞察を組織全体に円滑に伝達することを可能にします。また、広範なデータソースとの接続を確立しながら、アプリケーションやウェブサイトにシームレスに埋め込む能力も注目されています。 間違いなく、データサイエンスの分野で最も重要な要素の一つは、データの可視化の実践です。これは、視覚的要素(チャート、グラフ、マップなど)を用いて情報やデータをグラフィカルに説明することを意味します。これらの視覚ツールを活用することで、データの可視化はデータをより理解しやすくし、傾向や外れ値、パターンを判断しやすくします。要するに、Power BIは生データを視覚的に一貫性のある語りに変換する能力を持つ、典型的なツールであり、複雑なデータセットの普遍的な理解を向上させます。 Power BIビジュアライゼーションの理解 Power BIビジュアライゼーションは、Power BIを使用してデータをグラフィカルに表現するプロセスです。これにより、複雑なデータセットをより直感的で視覚的な形式で理解することができます。Power BIビジュアライゼーションは重要であり、テキストベースのデータでは明らかではない複雑な概念を理解したり、新しいパターンを識別したりすることができます。 Power BIビジュアライゼーションのメリットは多岐に渡ります。データと対話することができ、詳細な情報を得るためにチャートやグラフを掘り下げたり、他の人とレポートを作成して共有したりすることができます。また、ユーザーはユニークな360度のビジネスビューを持つパーソナライズされたダッシュボードを作成することも可能です。 Power BIビジュアライゼーションの種類 Power BIは、データを異なる方法で表現するための幅広いビジュアライゼーションを提供しています。 A. チャート チャートは、Power BIでのデータのグラフィカル表現です。これを使用して、複雑なデータセットを簡素化し、データを理解しやすく解釈できるようにします。Power BIはさまざまなチャートの種類を提供しており、それぞれ異なる種類のデータやデータの可視化タスクに適しています。 1.…

「モバイルアプリに予測分析を活用する8つの最良の方法」

モバイルアプリに予測分析を使用して、データ駆動型の戦略を構築します モバイルアプリで予測データ分析を実装する8つの方法を学びましょう

「自律AIエージェントを使用してタスクを自動化するための10の方法」

はじめに テクノロジーのダイナミックな風景の中で、自律型AIエージェントは変革的な存在として登場し、データと人工知能とのやり取りの方法を変えつつあります。この魅力的な領域に深入りするにつれて、これらのエージェントが単なるプログラム以上のものであり、私たちの日常生活におけるAIの統合においてパラダイムシフトを表していることが明らかになります。本記事では、現在利用可能な最も優れた自律型AIエージェントの中から10つを紹介します。これらのAIエージェントがあなたに何ができるのか、さらに詳しく知るために読み続けてください。 自律型AIエージェントとは何ですか? 自律型AIエージェントは、持続的な人間の介在なしにタスクを実行するために独立して動作する高度な人工知能システムです。これらのエージェントは、機械学習と自動化を活用して、異なる領域でタスクの分析、学習、および実行を行います。単純なタスク自動化ツールから、自然言語の理解、意思決定、および新しい情報への適応能力を持つ洗練されたシステムまで、さまざまな範囲のエージェントが存在します。自律型AIエージェントは、技術がさまざまな日常タスクとの相互作用を革新する上で重要な役割を果たしています。 自律型AIエージェントはどのように動作するのですか? 自律型AIエージェントが具体的に何をするか、またどのようにしてタスクを自己で実行できるのかを疑問に思っていましたか?これらの高度なAIモデルは、複雑な指示や目標をより小さな、シンプルなタスクに分解し、構造化されたプロセスでそれらを実行するように設計されています。また、特定のタスクの自動化やループでの操作も可能です。以下は、ほとんどの自律型AIエージェントの基本的なワークフローです。 タスクの定義:まず、AIエージェントが明確な指示、締切、および優先順位を持つタスクを作成します。 タスクの優先順位付け:次に、緊急性と重要性に基づいてタスクの優先順位を付けるためにAIアルゴリズムを使用します。 タスクを自動化:重複するタスクを効率的に実行するために、それらをAIモデルに委任します。 進捗の監視:プロセスの設定とタスクの実行後、これらのタスクの進捗状況を追跡し、リアルタイムで更新を受け取ります。 相互作用:これらのエージェントは、自然言語のコマンドを使用して簡単にタスクを作成、変更、管理することもできます。 トップ自律型AIエージェント 以下に、10の最も優れた自律型AIエージェントとそれぞれの説明、利点、および具体例をご紹介します。 1. AgentGPT AgentGPTは、多機能でカスタマイズ可能なオープンソースの自律エージェントです。旅行の計画、メールの作成、クリエイティブなテキスト形式の生成など、幅広いタスクを実行することができ、さらに追加の機能や機能を追加することでカスタマイズすることができます。AgentGPTは、名前と目標を追加し、展開ボタンをクリックするだけで使用することができ、コーディングは不要です。複雑なタスクをより小さなサブタスクに分解し、最小限の人間の関与で主目標を達成するために反復的なプロンプトを使用します。 利点 時間と労力を節約:AgentGPTは、あなたがたくさんの時間と労力を要するタスクを自動化することができます。 生産性の向上:タスクの自動化により、重要なことに集中するために時間を確保することができます。 楽しむ時間を増やす:退屈でつまらないタスクを自動化することにより、楽しい時間を過ごすことができます。 より創造的になる:新しいアイデアや可能性を生成することによって、より創造的になることができます。 具体例 ハワイ旅行の計画:AgentGPTは、フライト、宿泊施設、アクティビティなど、詳細なハワイ旅行を計画するのに役立ちます。 メールの作成:件名、本文、署名を含めたメールの作成をサポートします。…

チャットGPT vs Gemini:AIアリーナでのタイタン同士の激突

はじめに 人工知能の世界では、GoogleのGemini AIとOpenAIのChatGPTの2つの巨人の間で魅惑的な一戦が繰り広げられています。ChatGPTは注目を浴びていますが、Gemini AIは静かに強力な武器を作り上げ、攻撃の瞬間を待っていました。そして、その瞬間がやってきて、驚くべきベンチマークの連続がAIの世界の基盤を揺るがすことになりました。Googleは過去1年間、OpenAIのChatGPTが世界を席巻するのを静かに見守ってきました。しかし今、Googleの輝く番です。画期的なAIモデルであるGeminiの登場により、GoogleはAIの競技場に進出するだけでなく、それを再定義しようとしています。AIの世界でのタイタン同士の激突、ChatGPT対Geminiについて掘り下げてみましょう。 GoogleのCEOであるSundar Pichaiは、Geminiのリリースにより「新たなAIの時代」の到来を大胆に宣言しました。Geminiは最も高度な大規模言語モデル(LLM)であり、優れた「推論能力」を誇っており、複雑な問いにもより正確かつ深い理解で取り組むことができます。これにより、他のAIモデル(Google自身を含む)が抱える「幻覚」のリスクを最小限に抑えます。この飛躍的な進歩により、知的かつ微妙な思考プロセスが可能な新世代のAIが道を切り拓かれます。 Geminiの異なるバージョン Geminiはデータセンターからモバイルデバイスまで効率的に実行するように設計されています。これにより、開発者やあらゆる規模の企業が簡単に製品やサービスにAIを統合することができます。 Gemini Ultra Gemini Pro Gemini Nano Geminiの最も重要で強力なバージョンは、科学研究や薬物発見などの複雑なタスクに向けて設計されています。この最も強力なバージョンは現在一般公開されていません。Googleは2024年にリリースすることを発表しましたが、具体的な日付はまだ発表されていません。 これはChatbotsやバーチャルアシスタント、コンテンツ生成など、さまざまなタスクに拡張可能なGeminiの最良のバージョンです。このモデルはBard(ぜひ試してみてください)の基盤となっており、2023年12月13日からGoogle Generative AI StudioまたはVertex AI in Google Cloudを介して開発者やエンタープライズのお客様が利用できるようになります。 これはモバイル電話やスマートホームデバイスなどのデバイス上で実行するために設計された、最も効率的なGeminiのバージョンです。この軽量バージョンは現在、Pixel…

「SageMakerエンドポイントとしてカスタムMLモデルを展開する」

「機械学習(ML)モデルを開発するには、データ収集からモデルの展開までの重要なステップがありますアルゴリズムの改善やテストを通じてパフォーマンスを確認した後、最後の重要なステップは...」

エンターテイメントデータサイエンス:ストリーミングvs劇場

「トゥワード・データ・サイエンスの私の次のエンターテイメント・データ・サイエンス記事では、データ・サイエンスがコンテンツのライフサイクルのさまざまな段階で適用できることを紹介していますグリーンライトから製作まで...」

シミュレーション最適化:友人の会社のサポートデスクをモデル化し最適化の手助けをする

それは比較的シンプルな依頼から始まりました私の友人は、サポートセンターの運営を手伝っており、いくつかの困難を抱えていました支援デスクのエージェントはいつでも効率的でないようで…

エンドツーエンドの労働力管理を取得する: Amazon ForecastおよびAWS Step Functions

この記事は、Nafi Ahmet Turgut、Mehmet İkbal Özmen、Hasan Burak Yel、Fatma Nur Dumlupınar Keşir、Mutlu PolatcanおよびGetirのEmre Uzel共著によるゲスト投稿ですGetirは、超高速の食品宅配の先駆けですこのテクノロジー企業は、最後の一マイル配送を飛躍的に改革し、数分で食品を届ける提案をしましたGetirは2015年に設立され、運営しています...

「Pythonで脂肪尾を数値化する4つの方法」

「これはパワーロウとファットテールに関するシリーズの三番目の記事です前回の記事では、実証データからパワーロウを検出する方法について探求しましたこの技術は便利ですが、ファットテールはさらなる調査が必要です...」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us