Learn more about Search Results 場所 - Page 13

「Amazon SageMakerを使用してクラシカルなMLとLLMsを簡単にパッケージ化し、デプロイする方法 – パート1:PySDKの改善」

Amazon SageMakerは、開発者やデータサイエンティストが迅速かつ簡単に、いかなるスケールでも機械学習(ML)モデルを構築、トレーニング、展開できるようにする完全管理型サービスですSageMakerは、モデルをAPI呼び出しを介して直接本番環境に展開することを簡単にしますモデルはコンテナにパッケージ化され、堅牢かつスケーラブルな展開が可能です尽管[...]

「コール オブ デューティ」がGeForce NOWに登場

ゲームの始まりに – このGFNの木曜日は、高い期待を胸に待ち望まれたCall of Duty: Modern Warfare IIIがクラウド上に登場します。これは、NVIDIAとMicrosoftの提携の一環として、初めてActivisionのタイトルがGeForce NOWに登場するものです。 さらに、Call of Duty: Modern Warfare IIとCall of Duty: Warzoneも加わります – これらの3つのタイトルは、GeForce NOW上のCall of Dutyのロゴを通じて1つの中央場所からプレイすることができます。 そして、素晴らしい季節がやってきました…

混合現実で測定された没入型エンゲージメントの反応時間

「マサチューセッツ大学アムハースト校の研究者は、リアクションタイムが混合現実技術との存在感(没入型エンゲージメント)を測定するために潜在的に使用される可能性があることを発見しました」

「サティスファイラボのCEO兼共同創設者、ドニー・ホワイト- インタビューシリーズ」

2016年に設立されたSatisfi Labsは、会話型AI企業のリーディングカンパニーです早期の成功は、ニューヨーク・メッツ、メイシーズ、全米オープンとの協力により、ウェブサイトでは得られなかった情報への簡単なアクセスを可能にしましたドニーはブルームバーグで15年間働いた後、スタートアップの世界に足を踏み入れ、コーネル大学でMBAを取得しました[...]

「ChatGPTのコードインタプリター:データサイエンティスト向けGPT-4の高度なデータ分析」

イントロダクション ChatGPTは、ユーザーの入力に理解し、会話的に応答する能力で世界を驚かせているOpenAIによって開発された強力な言語モデルです。ChatGPTの最もエキサイティングな機能の1つは、Python、Java、JavaScript、C++など、さまざまなプログラミング言語でコードスニペットを生成できる点です。この機能により、コード全体を自分で記述する必要がないまま、素早くプロトタイプを作成したり問題を解決したりしたい開発者の間でChatGPTが人気の選択肢となっています。この記事では、データサイエンティスト向けのChatGPTのコードインタプリタについて調査します。さらに、その仕組みや機械学習コードの生成方法についても見ていきます。ChatGPTの利点と制限についても議論します。 学習目標 ChatGPTの高度なデータ分析の仕組みを理解し、機械学習コードの生成にどのように活用できるかを理解する。 Pythonを使用してデータサイエンティスト向けのChatGPTの高度なデータ分析を使用してコードスニペットを生成する方法を学ぶ。 ChatGPTの高度なデータ分析の利点と制限を理解する。 ChatGPTの高度なデータ分析を使用して機械学習モデルの設計と実装する方法を理解する。 欠損値の処理、カテゴリ変数のエンコーディング、データの正規化、数値特徴量のスケーリングなど、機械学習のためのデータの前処理方法を理解する。 データをトレーニングセットとテストセットに分割し、精度、適合率、再現率、F1スコア、平均二乗誤差、平均絶対誤差、R二乗値などの指標を使用して機械学習モデルのパフォーマンスを評価する方法を学ぶ。 これらの学習目標を習得することで、ChatGPTの高度なデータ分析を利用して機械学習コードを生成し、さまざまな機械学習アルゴリズムを実装する方法を理解できるようになります。また、これらのスキルを実世界の問題とデータセットに適用し、機械学習タスクにおけるChatGPTの高度なデータ分析の熟練度を示すこともできるようになります。 この記事はData Science Blogathonの一部として公開されました。 ChatGPTの高度なデータ分析はどのように機能するのですか? ChatGPTの高度なデータ分析は、大規模なテキストデータのコーパスで訓練されたトランスフォーマと呼ばれる深層学習モデルに基づいています。トランスフォーマは、入力テキストの異なる部分の文脈と関係を理解するために、セルフアテンションメカニズムを使用します。ユーザーがプロンプトやコードスニペットを入力すると、ChatGPTのモデルは訓練データから学んだパターンと構造に基づいて応答を生成します。 ChatGPTの高度なデータ分析は、オンラインの大量のコードを活用してコードスニペットを生成することができます。ChatGPTのモデルは、オープンソースのリポジトリや他のコードソースを分析することで、さまざまなプログラミング言語の構文、意味論、イディオムを学ぶことができます。ユーザーがコードの一部をリクエストすると、ChatGPTのモデルは関連する動作するコードスニペットを生成するためにこの知識を活用することができます。 ChatGPTを使用して機械学習コードを生成する 機械学習は、ChatGPTの高度なデータ分析の最も有望な応用の1つです。ディープラーニングや機械学習アプリケーションの台頭により、これらは研究開発の重要な領域となっていますが、これらのモデルの設計と実装は複雑で時間がかかる場合があります。線形代数、微分積分、確率論、コンピュータサイエンスの専門知識が必要になるからです。 ChatGPTの高度なデータ分析は、ユーザーがプロジェクトに統合できる機械学習のコードスニペットを生成することで、このプロセスを簡素化するのに役立ちます。例えば、ユーザーは、カリフォルニアの住宅価格を予測するための線形回帰技術を使用したコードスニペットを生成するようChatGPTに要求することができます。この際、入力として提供されたトレーニングデータセットは.csv形式です。ChatGPTのモデルは、ユーザーの入力に基づいて必要なインポート、データの前処理手順、モデルのアーキテクチャ、およびトレーニング手順を含むコードスニペットを生成することができます。 コードインタプリタにデータセットをアップロードして、以下のプロンプトを入力してください。 プロンプト: 上記のデータセットを使って、sklearnを使用して線形回帰を実行し、Pythonコードですべてのステップを表示します。データの予測変数はmedian_house_valueです。 レスポンス: “housing.csv”データセットを使用して、ターゲット変数として”median_house_value”を使用して、sklearnを使用した線形回帰の手順は次の通りです:…

ナレッジグラフ、ハードウェアの選択、Pythonのワークフロー、およびその他の11月に読むべきもの

データと機械学習の専門家にとって、1年間のイベント満載な時期もいよいよ終盤に入ってきました皆さんの中には、新しいスキルを学ぶために最後の力を振り絞り、最新の研究に追いつくために奮闘している方も多いことでしょう

APIワールド2023:API、AI、および秘密のセキュリティを結集する

「API World 2023は、ベストプラクティスの洞察を共有し、すべての資産を考慮すること、そしてAPI駆動型の世界におけるAIとAPIセキュリティの重要性についてでした」

ML.NETのカタログとユースケースを探検する

この機械学習初心者向けの概要は、ML.NETのカタログの概念に焦点を当てていますML.NETは、.NET開発者向けのクロスプラットフォームでオープンソースのMLフレームワークです

「PyTorch イントロダクション—テンソルとテンソル計算」

ディープラーニング分野で最も重要なライブラリの1つ(そしてChatGPTが構築された場所でもある)はpytorchですTensorflowフレームワークと共に、pytorchは最も有名なニューラル...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us