Learn more about Search Results 写真 - Page 13

パイソンによる機械学習エンジニアのためのデザインパターン:プロトタイプ

これはデザインパターンについて書いた初めてのブログの投稿ではありません最近の投稿で、デザインパターンの使用は一般的ではないため、このトピックに対して肯定的なフィードバックを受け取りました...

「みんなのためのLLM:ランニングLangChainとMistralAI 7BモデルをGoogle Colabで」

『誰もが大規模言語モデルは、定義通り大規模であることを知っていますそして、それもつい最近までは高性能なハードウェアの所有者または少なくともクラウドアクセスのために支払った人々にのみ利用可能でした...』

オリジナリティの試金石:AIが創造的所有権に挑む

「もしも誰かがあなたにとって本当に貴重なものを盗んで、さらにひどいことにそれを自分のものだと偽って売りさばいたら、あなたはどう感じるでしょうか?彼らの犯罪から利益を得ています一部のクリエイターやアーティストは、このような感情を抱いています...」

進化する離反予測:介入と再トレーニングのナビゲーション

「再教育回避モデルのリトレーニングには特別な注意が必要なユニークな課題が存在します特に注目すべきは、介入の因果関係を区別することです——積極的な顧客保持プログラムによって滞在し続けた顧客を特定し、彼らを対象にすることです」

なぜGPUはAIに適しているのか

GPUは人工知能の希少な地球の金属、さらには金そのものとも呼ばれています。それは、今日の生成的AI時代において基盤となる存在であるためです。それは3つの技術的理由と数多くのストーリーによって説明され、それぞれの理由には多くの側面がありますが、大まかに言えば次のようなものです。 GPUは並列処理を使用します。 GPUシステムはスーパーコンピュータの高さにまでスケールアップします。 AIのためのGPUソフトウェアスタックは幅広く深いです。 その結果、GPUはCPUよりも高速かつエネルギー効率が優れており、AIのトレーニングおよび推論においても優れたパフォーマンスを提供し、高速計算を使用するさまざまなアプリケーションにおいても利益をもたらします。 スタンフォード大学のヒューマンセンタードAIグループの最近のレポートによれば、GPUのパフォーマンスは「2003年以来約7000倍」向上し、価格性能比は「5600倍」増加していると報告されています。 2023年のレポートは、GPUのパフォーマンスと価格性能の急激な上昇を捉えています。 レポートはまた、AIの進展を測定し予測する独立系の研究グループであるエポックの分析も引用しています。 「GPUは、機械学習ワークロードを高速化するための主要なコンピューティングプラットフォームであり、過去5年間のほとんど(もしくはすべて)の最大のモデルがGPU上でトレーニングされています… それにより、AIの最近の進歩に重要な貢献をしています」とエポックはサイトで述べています。 また、米国政府のためにAI技術を評価した2020年の研究も同様の結論を導いています。 「製造および運用コストを含めた場合、最先端のAIチップは生産性と運用コストをリーディングノードCPUよりも1〜3桁高いと予想されます」と述べています。 「NVIDIAのGPUは、過去10年間にAI推論のパフォーマンスを1000倍向上させました」と同社の首席科学者であるビル・デーリー氏は、半導体およびシステムエンジニアの年次集会であるHot Chipsの基調講演で述べています。 ChatGPTがニュースを広める ChatGPTは、GPUがAIにとって優れたものであることを強力に示した例です。数千のNVIDIA GPUでトレーニングされ、実行される大規模な言語モデル(LLM)は、1億人以上の人々が利用する生成的AIサービスを提供しています。 その2018年のリリース以来、AIの業界標準ベンチマークであるMLPerfは、NVIDIA GPUのトレーニングおよび推論のリーディングパフォーマンスを詳細に示しています。 例えば、NVIDIA Grace Hopper Superchipsは最新の推論テストで圧倒的な成績を収めました。そのテスト以降にリリースされたNVIDIA TensorRT-LLM推論ソフトウェアは、パフォーマンスを最大8倍向上させ、エネルギー使用量と総所有コストを5倍以上削減します。実際、NVIDIA…

「ゼロ-ETL、ChatGPT、およびデータエンジニアリングの未来」

変化が苦手な方には、データエンジニアリングは適していませんこの領域では、ほとんどのことが再構築されました最も顕著な最近の例は、SnowflakeとDatabricksがデータベースの概念を変革し、モダンデータスタックの時代を開いていますこの動きの一環として、Fivetranとdbtは基本的に...

「デベロッパー用の15以上のAIツール(2023年12月)」

“`html GitHub Copilot GitHub Copilotは、市場をリードするAIによるコーディングアシスタントです。開発者が効率的に優れたコードを作成できるように設計され、CopilotはOpenAIのCodex言語モデルを基に動作します。このモデルは自然言語と公開コードの広範なデータベースの両方でトレーニングされており、洞察に満ちた提案を行うことができます。コードの行や関数を完全に補完するだけでなく、コメント作成やデバッグ、セキュリティチェックの支援など、開発者にとって大変貴重なツールとなっています。 Amazon CodeWhisperer AmazonのCodeWhispererは、Visual StudioやAWS Cloud9などのさまざまなIDEでリアルタイムのコーディング推奨事項を提供する、機械学習に基づくコード生成ツールです。大規模なオープンソースコードのデータセットでトレーニングされており、スニペットから完全な関数までを提案し、繰り返しのタスクを自動化し、コードの品質を向上させます。効率とセキュリティを求める開発者にとって大変便利です。 Notion AI Notionのワークスペース内で、AIアシスタントのNotionがさまざまな執筆関連のタスクをサポートします。創造性、改訂、要約などの作業を助け、メール、求人募集、ブログ投稿などの作成をスピードアップさせます。Notion AIは、ブログやリストからブレストセッションや創造的な執筆まで、幅広い執筆タスクの自動化に使用できるAIシステムです。NotionのAI生成コンテンツは、ドラッグアンドドロップのテキストエディタを使用して簡単に再構成や変換ができます。 Stepsize AI  Stepsize AIは、チームの生産性を最適化するための協力ツールです。プロジェクトの履歴管理やタスク管理の役割を果たし、Slack、Jira、GitHubなどのプラットフォームと統合して更新を効率化し、コミュニケーションのミスを防ぎます。主な機能には、活動の統一した概要、質問への即時回答、堅牢なデータプライバシーコントロールが含まれます。 Mintlify Mintlifyは、お気に入りのコードエディタで直接コードのドキュメントを自動生成する時間の節約ツールです。Mintlify Writerをクリックするだけで、関数のための良く構造化された、コンテキストに即した説明を作成します。開発者やチームにとって理想的であり、複雑な関数の正確なドキュメントを生成することで効率と正確性が高く評価されています。 Pieces for Developers…

関係データベースとその応用についての深い探求

今日では、さまざまな頻繁に関連のないカテゴリに膨大な量のデータを記憶する必要性が、高い効率のデータベースの重要な意義を強調しています。データベースは、迅速なアクセス、操作、分析を可能にするために、注意深く整理、構造化、保存されたデータのコレクションです。データベースは、データウェアハウジングやオンライントランザクション処理など、さまざまなタスクに役立ち、在庫記録、顧客情報、財務記録などのデータの種類をサポートしています。 リレーショナルデータベースとは何ですか? リレーショナルデータベースは、基本的にはテーブル形式で行と列にデータが整然と構造化されたセットです。このパラダイムでは、テーブルを使用してデータを記述し、各行が特定のレコードを示し、各列が特定のプロパティまたはフィールドを定義します。 基本的には、予め定義された関係を持つデータオブジェクトのセットがリレーショナルデータベースを構成します。テーブルの列は、各々が特定のタイプのデータを含み、フィールドは属性の実際の値を含んでいます。テーブルの行は、単一のアイテムやエンティティの関連する値のグループを表します。テーブル内の各行を識別するために一意の識別子である主キーが使用されます。外部キーは、異なるテーブルの行の関係を確立するために使用されます。 リレーショナルデータベースの例 子供の夏キャンプのデータでは、テーブル内の各行が個別のキャンパーを表し、彼らの名前、年齢、参加しているアクティビティ、および一意のID番号などの情報が含まれています。 ID Name Age Activity 1 John 11 Pottery 2 Courtney 16 Photography 3 Matt 14 Cooking 4 Jasmine…

スタビリティAIがアドバーサリアルディフュージョンディスティレーション(ADD)を導入します:最小限のステップでの高精度、リアルタイムイメージ合成の画期的な手法

生成モデリングにおいて、拡散モデル(DM)は、高品質な画像とビデオの合成を進めるための重要な役割を果たしています。拡張性と反復性は、DMの主な利点の2つであり、自由なフォームのテキストの手がかりからの画像の作成など、複雑なタスクを可能にします。残念ながら、反復的な推論プロセスには多くのサンプルステップが必要であり、現在のところDMのリアルタイム使用を妨げています。一方で、生成的対抗ネットワーク(GAN)の単一ステップの構成と固有の速度は、それらを特徴づけます。ただし、サンプルの品質に関しては、大規模データセットへの拡張の取り組みにもかかわらず、GANはしばしばより多くのDMが必要です。 本研究のStability AIの研究者たちは、GANの固有の速度とDMの高いサンプル品質を結びつけることを目指しています。彼らの戦略は概念的にはシンプルです。研究チームはAdversarial Diffusion Distillation(ADD)と呼ばれる汎用的な技術を提案しており、この技術は事前学習済みの拡散モデルの推論ステップを1〜4つのサンプリングステップに削減することで、モデルの全体的なパフォーマンスを向上させる可能性があります。研究チームは2つのトレーニングゴールを組み合わせています:(i)スコア蒸留サンプリング(SDS)に相当する蒸留損失と対抗損失。 各正方向パスでは、対抗損失がモデルが直接実際の画像の多様体上にあるサンプルを生成することを促し、他の蒸留技術でよく見られるぼやけ具合などのアーティファクトを除去します。大規模なDMに見られる高い組成能を保持し、事前学習された(かつ固定された)DMを教師として使用することで、蒸留損失は高い知識を効率的に活用します。彼らの手法は推論中に分類器フリーガイダンスを使用せずにメモリ要件も最小限に抑えています。従来の一ステップGANベースの方法と比べての利点は、研究チームがモデルを繰り返し開発し、結果を向上させることができるということです。 図1は、単一の操作で生成された高精細な写真を示しています。Adversarial Diffusion Distillation(ADD)トレーニングは、各サンプルごとに単一のU-Net評価を作成するために使用されます。 以下は彼らの貢献の要約です: • 研究チームはADDという技術を提案しました。この技術は、事前学習済みの拡散モデルを高品質でリアルタイムの画像ジェネレータに変換するために、わずか1〜4つのサンプリングステップを必要とします。研究チームは、対抗トレーニングとスコア蒸留を組み合わせた独自のアプローチのために、いくつかのデザイン上の決定を慎重に考慮しました。 • 5122 pxの解像度でフォースサンプリングステップを使用したADD-XLは、その教師モデルSDXL-Baseを上回ります。• ADDは、1つの推論ステップで高い現実感を維持しながら、複雑な画像構成を処理できます。• LCM、LCM-XL、および単一ステップGANなどの強力なベースラインを大幅に上回るADD。 結論として、この研究は、事前学習済みの拡散モデルをクイックで少数ステップの画像生成モデルに蒸留するための汎用的な技術、Adversarial Diffusion Distillation(ADD)を紹介しています。研究チームは、識別器を通じて実データを利用し、拡散の教師を通じた構造的な知識を利用しながら、対抗目的とスコア蒸留目的を組み合わせて、公共のStable DiffusionとSDXLモデルを蒸留することを組み合わせています。彼らの分析は、彼らの手法がすべての競合手法を打ち負かすことを示し、1〜2つのステップの超高速サンプリング領域で特に優れて機能することを示しています。また、研究チームはさまざまなプロセスを通じてサンプルを改善することができます。彼らのモデルは、IF、SDXL、およびOpenMUSEなどの人気のある多ステップジェネレータよりも4つのサンプルステップで優れたパフォーマンスを発揮します。彼らの方法論は、一つのステップで高品質の写真を開発することにより、基盤モデルを使用したリアルタイム生成の新たな可能性を開くものです。

データ分析への移行のためのロードマップ

「あなたは関連性のない分野で大学の学位を持っているかもしれませんし、完全に異なる分野で働いているかもしれませんしばらくの間データ分析の役割に転職したいと思っているかもしれませんが、まだ…」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us