Learn more about Search Results ドキュメント - Page 13
- You may be interested
- ランダムフォレストモデルの経営概要
- 「AIを活用したツールにより、3Dプリント...
- 2023年9月にチェックすべき40以上のクール...
- このAI研究は、大規模言語モデル(LLM)に...
- 遺伝的アルゴリズム:エンゲージメントを...
- 「Excelでウォーターフォールチャートを作...
- グーグルシートでChatGPTを利用する方法
- MLモデルの最適化とデバッグにSHAP値を使...
- 「GPT-4セーフティーの破壊:火遊びエディ...
- チューリングテスト、中国の部屋、そして...
- オープンAIのファンクションコーリング入門
- 「混合エキスパートモデルの理解に向けて」
- 世界的な障壁を取り払ってアクセスを可能...
- 初心者のデータサイエンスの面接を成功さ...
- 基本に戻る ウィーク4:高度なトピックと展開
Amazon SageMakerノートブックのジョブをスケジュールし、APIを使用してマルチステップノートブックのワークフローを管理します
Amazon SageMaker Studioは、データサイエンティストが対話的に構築、トレーニング、展開するための完全に管理されたソリューションを提供しますAmazon SageMakerのノートブックジョブを使用すると、データサイエンティストはSageMaker Studioで数回クリックするだけで、ノートブックを必要に応じて実行するか、スケジュールに従って実行することができますこの発表により、ノートブックをジョブとしてプログラムで実行することができます[...]
リアルタイムなSlackボットを生成的AIで構築する
「Apache NiFi、LLM、Foundation Models、およびストリーミングを使用して、クールなSlackbotを構築する方法を学びましょうモデルの選択肢と統合についても取り上げます」
「時空のホットスポット:洞察力の新たな次元を開放する方法」
「80%以上のデータが空間要素を持つという統計データを聞いたことがあるかもしれませんが、時間次元を持つデータはほぼ100%ですしかし、これらの2つの要素の相互作用を効果的に分析する方法はありますか?空間-時間クラスタリングという手法がありますこの技術は、空間的な要素と時間的な要素の両方を分析します...」
アマゾンは、「Amazon Q」という会社の生成AIアシスタントを発表しました
競争の激しいプロダクティビティソフトウェアと生成AIチャットボットの分野において、Amazonが最新のイノベーション「Amazon Q」を発表しましたこの発表は、ラスベガスで開催されたAWS Reinventカンファレンスで行われ、MicrosoftやGoogleなどのテックジャイアントが既に大きな存在感を持っている領域へのAmazonの積極的な進出を象徴しています
システムデザインのチートシート:ElasticSearch
前の記事で検索について読んだことがあれば、アプリケーションにとって検索がいかに重要かを知っているでしょう考えてみてください:毎日使用するさまざまなウェブアプリやモバイルアプリの中で、Netflixなどがあるかもしれませんが...
「ハイブリッド検索を用いたRAGパイプラインでの検索パフォーマンスの向上」
「キーワードとベクトル検索を組み合わせたハイブリッド検索としての検索強化型生成チャットボットアプリケーションの製品準備の向上」
「BeautifulSoupを使ったWebスクレイピングのマスタリング」
これはWebスクレイピングを学びたい人にとって素晴らしいガイドですBeautifulSoupを使ったWebスクレイピングの基礎を理解し、どのように使うかを説明しています
‘製品およびエンジニアリングリーダーのための実践的なGenAI’
「もし普段から運転することがあるなら、自動車のフードには気にすることなく綿が詰まっているかもしれませんしかし、もしもあなたがより良い車を作る責任を持つ設計や製造の一環であるならば…」
中国からのこのAI論文では、「モンキー」という新しい人工知能のアプローチが紹介されていますこれは、大規模なマルチモーダルモデルで入力の解像度と文脈関連性を向上させるための方法です
大規模なマルチモーダルモデルは、テキストや画像を含むさまざまなデータを処理し分析する能力があるため、ますます人気が高まっています。学界では、画像のラベリング、ビジュアルな質問への回答など、さまざまなマルチモーダルな活動でその知識が認識されています。LLaVA、MiniGPT4、mPLUG-Owl、Qwen-VLなど、最先端のモデルは、この分野での迅速な進歩の例です。ただし、特に複雑なシナリオの取り扱い時には、さまざまな画像解像度の幅広さや、トレーニングデータの品質の必要性など、いくつかの障害があります。画像エンコーダは改善され、大規模なデータセットが使用されて入力解像度を増やすことで、これらの困難を克服するための取り組みがなされています。 さらに、LLaVAは、マルチモーダルな状況での指示調整を革新的に拡張することで、マルチモーダルな指示に従うデータを統合しています。しかし、これらの手法は頻繁に画像の入力サイズを持続可能に管理し、かつ大規模なトレーニングコストに対処するための支援が必要です。データセットが大きくなるにつれて、画像とテキストの関連性の微妙なニュアンスを理解するために、より複雑な画像の説明が必要とされる状況が増えてきます。これは、COYOやLAIONなどのデータセットで見られる簡潔な一文のキャプションで満たされる必要がある条件です。これらの制約により、華中科技大学と金山研究所の研究者らは、Monkeyと呼ばれるLMMパラダイムのコンテキストで入力解像度を高めるためのリソース効率の良い技術を提案しています。既存のLMMを活用することで、時間のかかる事前トレーニングプロセスを回避することができるため、大規模なオープンソースの作業が豊富に存在していることに感謝します。 研究チームは、高解像度の画像をより管理しやすく、局所的な部分に分割するためのスライディングウィンドウアプローチを使用するシンプルかつ効率的なモジュールを提案しています。静的なビジュアルエンコーダ、複数のLoRA修正、および訓練可能なビジュアルリサンプラは、各パッチを個別にエンコードします。その後、言語デコーダには、これらのパッチのエンコーディングとグローバルな画像のエンコーディングが与えられ、より良い画像理解が行われます。また、BLIP2、PPOCR、GRIT、SAM、ChatGPT OpenAIなどの多くのジェネレータからのマルチレベルの手がかりを組み合わせた技術も開発し、豊富で高品質なキャプションデータを提供しています。 まず、彼らのモデルの画像キャプショニングの割り当ては、画像のさまざまなアクセサリやバックドロップの赤い旗など、間違いや抜けがなくほぼすべての側面を正確に説明することができます。キャプションに含まれる茶色のバッグは、写真をよく見ないとすぐには明らかでないかもしれませんが、モデルの説明では強調されています。この小さなヒントにより、モデルは確実に検証することができなくても理に適った結論を導くことができます。これにより、モデルは小さなアイテムにも注意を払い、論理的かつ正確な説明を提供する能力を示しています。ビジュアルの詳細な説明の提供だけでなく、モデルはさまざまな言語とそれらに対応する信号を区別することもできます。 この情報を使用することで、Monkeyによる写真の効用を合理的に予測することができます。写真の水印である “life quotes Tumblr” に “e” が欠けていても、モデルはそれに関する質問に答えることができます。これは、トレーニング後により高い解像度の写真の小さなテキストを読む能力を示しています。さらに、モデルが “October 6, 1966” という日付に関する質問に正しく応答することで、チャートからデータを読み取り、濃密なテキスト素材の中から適切な応答を特定する能力も示されています。この現象は、モデルが特定のテキストとそれに対応する目標の整合性を正確に表現できる能力を示し、濃密であいまいなテキストでもクエリに正確に応答する能力と、目的と全体的な知識の関連性を強調しています。 Monkeyの利点は次のようにまとめられます: 1. コンテキスト内の関連性。研究チームは、説明の生成においてさまざまなターゲット間の関係を理解し、テキスト説明を作成する際に共通の知識をより効果的に探索するためのマルチレベル戦略を提案することで、モデルの能力を向上させています。これにより、より深い洞察と詳細な結果が生み出されます。 2. 事前トレーニングなしで、1344 x 896までの解像度をサポート。LMMに通常使用される448 x…
「リテラルを使ったPythonの型ヒント」
認めます:私はいつもタイピングのファンではありませんでしたPythonのリテラルタイプの形式で、リテラルタイプを作成する方法実際、私はリテラルタイプを過小評価するだけでなく、完全に無視し、使用を拒否しました...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.