Learn more about Search Results これ - Page 13

Googleは独占禁止法訴訟で敗訴:ビッグテックにとって何を意味するのか?

「エピックゲームズが検索大手との法的闘争に勝利した事は画期的な勝利であり、同社の強さと決断力を示す重要な節目となりました」

「偉大なる遺伝子データの漏洩:知っておくべきこと」

A class action lawsuit has been launched against a genetic testing company for the protection of personal genetic data that was unfortunately stolen.

マウス用のVRゴーグル:ネズミの世界の秘密を解き放つ

ノースウェスタン大学の研究者たちは、マウス向けの仮想現実ゴーグルを作り出すことで画期的な成果を達成しましたこの革新的な技術により、より高度な実験を行い、マウスの行動や認知機能をより深く理解することが可能になりましたこのブレークスルーは、科学研究を大幅に向上させ、将来の発見の道を開拓する可能性を秘めています

「バイデン政権によるAIヘルスケアアプリのラベリングシステム案」

バイデン政権が、健康ケアアプリに人工知能を活用した新しいラベリングシステムを導入し、安全性と信頼性を最優先にしていますこれにより、より良い健康ケアを提供することが可能になります

MITエンジニアによって開発された心臓右心室のロボティックレプリカ

マサチューセッツ工科大学(MIT)の名門研究者たちは、革新的な心臓右室のロボットレプリカを開発しましたこの画期的な創造物は、人間の心臓の理解を大きく広げるだけでなく、医学研究と技術の進歩にも大きく貢献する可能性があります

「チャットボットの台頭:バカな機械からクリエイティブな共同作業者へ」

2023年は私たちにとって画期的な年となりましたロボットとのコミュニケーション、創造性、チームワーク、さらには操作術をマスターしたことで、私たちの能力が向上しました

📱 アップルが不正な認証からのiMessageアクセスをブロック

アップルは積極的な対策を実施することで顧客の安全を最優先に考えていますしかし、Beeperによると、彼らの最新の行動は逆効果になってしまったようですしかし、アップルは顧客の安全を重視し、積極的な対策を実施する姿勢は評価されるべきです

「注目メカニズムの解読:トランスフォーマーモデルにおける最大幅解法に向けて」

アテンションメカニズムは、自然言語処理と大規模な言語モデルにおいて重要な役割を果たしてきました。アテンションメカニズムによって、トランスフォーマーデコーダは入力シーケンスの最も関連性の高い部分にフォーカスすることができます。このメカニズムは、入力トークン間のソフトマックス類似度を計算し、アーキテクチャの基礎的なフレームワークとしての役割を果たすことで、重要な役割を果たしています。ただし、アテンションメカニズムによってモデルが最も関連性の高い情報に集中することができることはよく知られていますが、この最も関連性の高い入力部分にフォーカスするプロセスの複雑性や具体的なメカニズムはまだ不明です。 そのため、アテンションメカニズムを理解するためには多くの研究が行われています。ミシガン大学の研究チームによる最近の研究では、トランスフォーマーモデルが使用するメカニズムを探求しています。研究者たちは、トランスフォーマーが多くの人気のあるチャットボットのバックボーンアーキテクチャである隠れ層を利用して、サポートベクターマシン(SVM)に似たアテンションメカニズムを利用していることを発見しました。これらの分類器は、データ内の境界を引くことで2つのカテゴリー(関連する情報と関連しない情報)を識別するために学習します。 研究者たちは、トランスフォーマーがデータを関連する情報と関連しない情報に分類するために、サポートベクターマシン(SVM)に似た昔ながらの手法を利用していることを強調しています。例えば、チャットボットに対して長い記事の要約を依頼する場合を考えてみましょう。トランスフォーマーはまずテキストをトークンと呼ばれる小さな部分に分割します。そして、対話中にアテンションメカニズムは各トークンに重みを割り当てます。テキストの分割や重みの割り当ては反復的に行われ、進化する重みに基づいて応答を予測し形成します。 会話が進むにつれて、チャットボットは全体の対話を再評価し、重みを調整し、繊細なコヒーレントな文脈に基づいた返答を行います。要するに、トランスフォーマーのアテンションメカニズムは多次元の数学を実行します。この研究は、アテンションメカニズム内での情報検索の基本的なプロセスを説明しています。 この研究は、トランスフォーマーアーキテクチャ内のアテンションメカニズムがどのように機能するかを理解するための重要な一歩です。この研究は、長く複雑なテキスト入力に対してチャットボットがどのように応答するかの謎を解明しました。この研究に基づいて、大規模な言語モデルをより効率的かつ解釈可能にすることができる可能性があります。研究者たちは、この研究の結果を利用してAIの効率とパフォーマンスを向上させることを目指しており、NLPや関連分野においてアテンションメカニズムを洗練させる可能性が開かれています。 まとめると、この研究はアテンションメカニズムの動作について議論し、解明するだけでなく、効果的かつ解釈可能なAIモデルの将来的な開発にも希望を抱かせます。アテンションメカニズムがSVMのようなメカニズムを適用していることを示すことで、自然言語処理の分野での進歩だけでなく、アテンションが重要な役割を果たす他のAIアプリケーションの進歩も約束しています。

バイトダンスAI研究がStemGenを紹介:音楽の文脈を聞いて適切に反応するためにトレーニングされたエンドツーエンドの音楽生成ディープラーニングモデル

音楽生成は、既存の音楽に存在するパターンと構造を模倣するためにモデルを訓練することで行われるディープラーニングの一環です。RNN、LSTMネットワーク、トランスフォーマーモデルなど、ディープラーニングの技術が一般的に使用されます。この研究では、音楽のコンテキストに応じて反応する非自己回帰型のトランスフォーマーベースのモデルを使用して音楽音声を生成する革新的なアプローチを探求しています。従来のモデルが抽象的な調整に頼っているのに対し、この新しいパラダイムは聞くことと反応することを重視しています。この研究では、フィールドの最新の進歩を取り入れ、アーキテクチャの改良について議論しています。 SAMIと字節跳動社の研究者は、音楽コンテキストに反応する非自己回帰型のトランスフォーマーベースのモデルを紹介し、MusicGenモデルのための公開されたエンコードチェックポイントを活用しています。評価には、Frechet Audio Distance(FAD)やMusic Information Retrieval Descriptor Distance(MIRDD)などの標準的な指標や音楽情報検索ディスクリプタのアプローチが使用されています。その結果、このモデルは客観的な指標と主観的MOSテストを通じて、競争力のある音声品質と強固な音楽のコンテキストに対する整合性を示しています。 この研究は、画像と言語処理からの技術を借用して、ディープラーニングを通じたエンドツーエンドの音楽音声生成の最新の進展を強調しています。音楽作曲におけるステムの整合性の課題を重視し、抽象的な調整に頼る従来のモデルに対する批判を行っています。音楽のコンテキストに対して反応するためのモデルに非自己回帰型のトランスフォーマーベースのアーキテクチャを使用するトレーニングパラダイムを提案しています。モデルの評価には、客観的な指標、音楽情報検索ディスクリプタ、および聴取テストが必要です。 この手法では、音楽生成に非自己回帰型のトランスフォーマーベースのモデルを使用し、別個の音声エンコーディングモデルで残差ベクトル量子化を組み合わせています。複数の音声チャンネルを連結された埋め込みを介して単一のシーケンス要素に組み合わせます。トレーニングにはマスキング手法が使用され、強化された音声コンテキストの整合性を向上させるためにトークンサンプリング中にクラシファイアフリーガイダンスが使用されます。フレーシェ音声距離や音楽情報検索ディスクリプタ距離などの客観的な指標によってモデルのパフォーマンスが評価されます。生成されたサンプルを実際のステムと比較することで評価が行われます。 この研究では、標準的な指標や音楽情報検索ディスクリプタアプローチ(FADやMIRDDなど)を使用して生成されたモデルを評価しています。実際のステムとの比較により、モデルは最先端のテキスト条件付きモデルと同等の音声品質を達成し、音楽のコンテキストに強い音楽的な整合性を示しています。音楽のトレーニングを受けた参加者を対象としたMean Opinion Scoreテストは、このモデルが現実的な音楽の結果を生成する能力を確認しています。生成されたステムと実際のステムの分布整合性を評価するMIRDDは、音楽の一貫性と整合性の尺度となります。 まとめると、行われた研究は以下のように要約できます: この研究では、音楽のコンテキストに応答できる生成モデルの新しいトレーニングアプローチを提案しています。 このアプローチは、トランスフォーマーバックボーンを持つ非自己回帰言語モデルと、未検証の2つの改良点(マルチソースのクラシファイアフリーガイダンスと反復デコーディング中の因果バイアス)を導入しています。 これらのモデルは、オープンソースおよび独自のデータセットでトレーニングすることで最先端の音声品質を達成しています。 標準的な指標や音楽情報検索ディスクリプタのアプローチによって最先端の音声品質が検証されています。 Mean Opinion Scoreテストは、モデルが現実的な音楽の結果を生成する能力を確認しています。

「ODSC East 2024 Pre-Bootcamp Primer コースのお知らせ」

私たちは、ODSC東プリブートキャンププライマーコースで2024年をスタイリッシュにスタートさせます!今年は、新しく3つのコースが追加されました2024年のトップAIスキル、機械学習入門、大規模言語モデルとプロンプトエンジニアリング入門です以下で全セッションをご覧ください2024年のトップAIスキル...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us