Learn more about Search Results データサイエンス - Page 135
- You may be interested
- データサイエンスにおける正規分布の適用...
- 最大のLLMベンチマーキングスイート:MEGA...
- ランナーの疲労検知のための時間系列分類 ...
- ChatGPTコードインタープリタープラグイン...
- 「FAANGまたはスタートアップでキャリアを...
- 「Python を使用した簡単な株式トレーディ...
- シャム・ボージワニは、自動化、デジタル...
- 「ビームサーチ:シーケンスモデルでよく...
- ロボット用の物理シミュレータを公開する
- トランスフォーマーによるOCRフリーの文書...
- 州は、より多くのコンピューターサイエン...
- Q-Learningの紹介 パート2/2
- 「蒸留されたアイデンティティの傾向最適...
- 関係データベースとその応用についての深...
- 「ジェネラティブAI:2024年の人事におけ...
紛争のトレンドとパターンの探索:マニプールのACLEDデータ分析
はじめに データ分析と可視化は、複雑なデータセットを理解し、洞察を効果的に伝えるための強力なツールです。この現実世界の紛争データを深く掘り下げる没入型探索では、紛争の厳しい現実と複雑さに深く踏み込みます。焦点は、長期にわたる暴力と不安定状態によって悲惨な状況に陥ったインド北東部のマニプール州にあります。私たちは、武装紛争ロケーション&イベントデータプロジェクト(ACLED)データセット[1]を使用し、紛争の多面的な性質を明らかにするための詳細なデータ分析の旅に出ます。 学習目標 ACLEDデータセットのデータ分析技術に熟達する。 効果的なデータ可視化のスキルを開発する。 脆弱な人口に対する暴力の影響を理解する。 紛争の時間的および空間的な側面に関する洞察を得る。 人道的ニーズに対処するための根拠に基づくアプローチを支援する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 利害の衝突 このブログで提示された分析と解釈に責任を持つ特定の組織や団体はありません。目的は、紛争分析におけるデータサイエンスの潜在力を紹介することです。さらに、これらの調査結果には個人的な利益や偏見が含まれておらず、紛争のダイナミクスを客観的に理解するアプローチが確保されています。データ駆動型の方法を促進し、紛争分析に関する広範な議論に情報を提供するために、積極的に利用することを推奨します。 実装 なぜACLEDデータセットを使用するのか? ACLEDデータセットを活用することで、データサイエンス技術の力を活用することができます。これにより、マニプール州の状況を理解するだけでなく、暴力に関連する人道的側面にも光を当てることができます。ACLEDコードブックは、このデータセット[2]で使用されるコーディングスキームと変数に関する詳細な情報を提供する包括的な参考資料です。 ACLEDの重要性は、共感的なデータ分析にあります。これにより、マニプール州の暴力に関する理解が深まり、人道的ニーズが明らかにされ、暴力の解決と軽減に貢献します。これにより、影響を受けるコミュニティに平和で包摂的な未来が促進されます。 このデータ駆動型の分析により、貴重な洞察力を得るだけでなく、マニプール州の暴力の人的コストにも光が当てられます。ACLEDデータを精査することで、市民人口、強制的移動、必要なサービスへのアクセスなど、地域で直面する人道的現実の包括的な描写が可能になります。 紛争のイベント まず、ACLEDデータセットを使用して、マニプール州の紛争のイベントを調査します。以下のコードスニペットは、インドのACLEDデータセットを読み込み、マニプール州のデータをフィルタリングして、形状が(行数、列数)のフィルタリングされたデータセットを生成します。フィルタリングされたデータの形状を出力します。 import pandas as pd # ACLEDデータをダウンロードして国別のcsvをインポートする…
線形回帰の理論的な深堀り
多くのデータサイエンス志望のブロガーが行うことがあります 線形回帰に関する入門的な記事を書くことですこれは、この分野に入る際に最初に学ぶモデルの1つであるため、自然な選択肢です...
Pythonの依存関係管理:どのツールを選ぶべきですか?
あなたのデータサイエンスプロジェクトが拡大するにつれて、依存関係の数も増えますプロジェクトの環境を再現可能かつメンテナンス可能に保つために、効率的な依存関係を使用することが重要です...
GPTとBERT:どちらが優れているのか?
生成AIの人気の高まりに伴い、大規模言語モデルの数も増加していますこの記事では、GPTとBERTの2つのモデルを比較しますGPT(Generative...
注目すべきプラグイン:データ分析を自動化するChatGPTプラグイン
このChatGPTプラグインを使用して、EDAプロセスを高速化してください
Btech卒業後に何をすべきですか?
Btechの後に何をすべきですか?このよくある質問は、最終学年や最近卒業した学生にとって悩みの種です。多くの人々が従来のキャリアパスを選ぶ一方、一部の人々は新しい分野でのキャリアを研究し探求することを決めます。より多くの選択肢を探索し、スキル開発に重点を置き、継続的な学習、進化する技術について常に最新情報を得ることにより、個人は速いペースのBtechの後の旅で成功することができます。この記事では、Btechの後の最良のキャリアオプションについて説明しています。 Btech卒業生の従来のキャリアパス エンジニアの仕事 ソフトウェアエンジニア/開発者: コンピューターサイエンスのBTechを持つソフトウェアエンジニアは、オンラインやモバイルアプリ、データベース管理、ソフトウェアアーキテクチャの開発に参加します。 ハードウェアエンジニア: ハードウェアエンジニアは、コンピューターハードウェアコンポーネントを作成、開発、テストし、最適な動作を確保します。 機械エンジニア: 製品設計、ロボット、産業機械など多様な産業で機械システムを開発、分析、構築します。 電気エンジニア: 電力発電、エレクトロニクス、通信、再生可能エネルギーシステムを計画、開発、維持します。 土木エンジニア: 建設、構造の安全性、環境持続性を維持しながら、インフラプロジェクトの計画、設計、構築、維持を行います。 宇宙航空エンジニア: 航空機、宇宙船、関連技術の設計、開発、テストの責任を担います。 化学エンジニア: 石油化学、医薬品、環境工学、材料科学など、幅広い産業でプロセスを作成、管理します。 環境エンジニア: 環境保護、持続可能性、廃棄物管理のソリューションを提供し、規制に適合します。 大学院研究と研究 MTechまたはME: BTech卒業生は、MTechまたはMEなどの大学院課程を追求することができます。これらには研究の可能性、高度なコースワーク、エンジニアリングの専門分野が含まれます。 MS: BTech卒業生は、研究、コースワーク、協力、論文の達成に焦点を当てた工学のMaster…
大規模言語モデルに関するより多くの無料コース
大規模言語モデルについて学びたいですか? DeepLearning.AI、Google Cloud、Udacityなどの無料のコースで、すぐに始めましょう
ExcelとPower BI – 意思決定においてどちらが優れているか?
現代の急速なビジネス環境においては、組織の成功のためには情報をもとにした意思決定が不可欠です。人気のあるビジネスインテリジェンスツールとそのユニークな機能を理解することが、真のポテンシャルを引き出す上で重要です。MS ExcelとPower BIの両方は、データ分析と意思決定に関する印象的な機能を提供しています。ただし、最適な選択を決定するには、具体的な要件に応じて決定する必要があります。この記事では、MS ExcelとPower BIの強みと特定のユースケースについて掘り下げ、ビジネスニーズに合わせてどちらのツールを選択するかをお手伝いします。 MS Excelとは? Microsoft Excelは、データの整理、操作、分析、可視化が可能な強力かつ使いやすいツールです。データ処理、クリーニング、変換などの重要な機能を提供しています。データ分析と可視化には、データ分析ツール、ピボットテーブル、グラフなどの組み込み機能があります。また、Goal Seek、Solver、Decision Trees、Sensitivity analysisなどの機能により、要約されたデータに基づいて情報をもとにした意思決定が可能です。Power PivotやQueryは、データモデリングや変換を容易にすることで、意思決定に重要な役割を果たしています。Excelは、データを分析し、効果的な意思決定を行うための多目的なツールです。 Power BIとは? Power BIは、Excelと同等の性能を持ち、データ変換、意思決定、さまざまなデータソースへの接続、統合、可視化、プレゼンテーションなどの機能を提供するMicrosoftが提供する別の意思決定テーブルです。Power BIには、動的でインタラクティブなレポートやリアルタイムダッシュボードを作成する機能など、独自の特徴があります。また、データモデリング、異なるデータ間の関係の形成、データ内の依存関係の検索なども含まれます。 さらに、Power Queryを介したデータクエリは、直感的なグラフィカルインターフェースを使用して、クリーニング、整形、および変換などのデータ処理アクションを実行する興味深い機能です。Microsoftの製品として、包括的で使いやすいビジネスインテリジェンスツールとしてのコア機能とサービスを提供します。 Excelの最良の機能 1. データの整理に使用できるスプレッドシート ソートおよびフィルタリング:ソートおよびフィルタリング機能を使用して、データを簡単に整理できます。…
AutoML – 機械学習モデルを構築するための No Code ソリューション
はじめに AutoMLは自動機械学習としても知られています。2018年、GoogleはクラウドAutoMLを発表し、大きな関心を集め、機械学習と人工知能の分野で最も重要なツールの1つとなりました。この記事では、「Google Cloud AutoML」を使った機械学習モデルを構築するためのノーコードソリューションである「AutoML」について学びます。 AutoMLは、Google Cloud Platform上のVertex AIの一部です。Vertex AIは、クラウド上で機械学習パイプラインを構築および作成するためのエンドツーエンドソリューションです。ただし、Vertex AIの詳細については、別の記事で説明します。AutoMLは、主に転移学習とニューラルサーチアーキテクチャに依存しています。データを提供するだけで、AutoMLはユースケースに最適なカスタムモデルを構築します。 この記事では、Pythonコードを使ったGoogle Cloud Platform上でのAutoMLの利点、使用方法、実践的な実装について説明します。 学習目標 コードを使ったAutoMLの使用方法を読者に知らせること AutoMLの利点を理解すること クライアントライブラリを使用してMLパイプラインを作成する方法 この記事は、Data Science Blogathonの一部として公開されました。 問題の説明 機械学習モデルを構築することは時間がかかり、プログラミング言語の熟練度、数学と統計の良い知識、および機械学習アルゴリズムの理解などの専門知識が必要です。過去には、技術的なスキルを持つ人々だけがデータサイエンスで働き、モデルを構築できました。非技術的な人々にとっては、機械学習モデルを構築することは最も困難なタスクでした。ただし、モデルを構築した技術的な人々にとっても道のりは容易ではありませんでした。モデルを構築した後、メンテナンス、展開、および自動スケーリングには追加の努力、労働時間、およびわずかに異なるスキルセットが必要です。これらの課題を克服するために、グローバル検索大手のGoogleは、2014年にAutoMLを発表しましたが、後に一般に公開されました。 AutoMLの利点 AutoMLは手動の介入を減らし、少しの機械学習の専門知識が必要となります。…
Voxel51 は、コンピュータビジョンデータセット分析のための Python コードを生成するために GPT-3.5 の能力を活用する AI アシスタントである VoxelGPT をオープンソース化しました
データ中心のコンピュータビジョンと機械学習ソフトウェアの有名なイノベーターであるVoxel51は、最近VoxelGPTを立ち上げ、コンピュータビジョンの分野で驚くべきブレークスルーを実現しました。GPT-3.5の力とFiftyOneの多目的コンピュータビジョンクエリ言語を活用することで、VoxelGPTはコンピュータビジョンエンジニア、研究者、組織が高品質のデータセットを編集し、高性能のモデルを開発し、AIプロジェクトを概念実証から製品化まで迅速に移行することを可能にします。 VoxelGPTは、自然言語クエリと実用的なPythonコードのシームレスな統合を提供します。この変革的な機能により、ユーザーは1行のコードを書くことなく、データセット内の画像やビデオを簡単にフィルタリング、ソート、意味的にスライスし、洞察を得ることができます。従来のノーコードおよびローコードソリューションとは異なり、VoxelGPTはFiftyOneの高度なクエリと視覚化の簡易性を組み合わせ、ユーザーが好みのツールやライブラリの柔軟性を活用しながら、コンピュータビジョンのワークフローを加速します。 VoxelGPTには、コンピュータビジョンのワークフローを簡素化し、時間とリソースを節約するいくつかの重要な機能があります。 1. コンピュータビジョンデータセットを検索する:ユーザーは自然言語クエリを使用してデータセットを検索し、ランダムサンプルを取得したり、偽の楽観的な予測を行った一意の画像を特定することができます。 2. コンピュータビジョン、機械学習、データサイエンスの質問をする:VoxelGPTは、基本的なコンセプトの洞察や一般的なデータ品質の問題に対する解決策を提供する包括的な教育リソースです。ユーザーは、画像中のオブジェクト検出、データセットの冗長性を減らす方法などについて質問することができます。 3. ドキュメンテーション、API仕様、チュートリアルを検索する:VoxelGPTは、FiftyOneドキュメンテーションの完全なコレクションへのアクセスを提供し、FiftyOne関連の質問に素早く答えるのに役立ちます。カスタムデータセットをFiftyOneにロードする方法、COCO形式でデータセットをエクスポートする方法、ポイントクラウドの2D画像を生成する方法などのトピックを迅速に取り上げることができます。 Voxel51は、データの透明性と明確性を提唱し、高品質のデータセットとコンピュータビジョンモデルを構築するためのオープンソースおよび商用ソフトウェアソリューションを提供しています。数千人のエンジニアや科学者が、機械学習のワークフローのためにその提供を広く採用しています。自動車、ロボット、セキュリティ、小売、ヘルスケアなど多様なセクターのエンタープライズ顧客は、Voxel51が提供する協調プラットフォームであるFiftyOne Teamsに依存して、データセットとモデルの安全な共同作業を行っています。データ中心のAIソリューションを提供することにコミットするVoxel51は、世界にデータ中心のAIをもたらすビジョンを共有する卓越した個人のチームを拡大し続けています。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.