Learn more about Search Results データサイエンス - Page 134
- You may be interested
- リアルタイムなSlackボットを生成的AIで構...
- 「ODSC West 2023 写真で振り返る」
- 「DreamPose」というAIフレームワークを使...
- ケンブリッジ大学とUCLAの研究者が、信頼...
- 「データサイエンスとビジネスアナリティ...
- AIの今週、8月18日:OpenAIが財政的な問題...
- 「NVIDIAがゲームチェンジャーとマーケッ...
- ChatGPT’ の邪悪な双子 ‘Worm...
- 生産性のパラノイアを打破する:Microsoft...
- 「2023年のトップビデオ会議ツール」
- 「openCypher* はどんなリレーショナルデ...
- 「AIを活用したツールにより、3Dプリント...
- パンダのカット対qcutが明確に説明されて...
- オープンAIがインドに進出:現地チームの設立
- ストーリーの生成:ゲーム開発のためのAI #5
ChatGPT プラグイン:知っておく必要があるすべて
OpenAIが展開したサードパーティのプラグインについて学び、ChatGPTsの実際の使用を理解しましょう
人工知能は人間を置き換えるのか?
はじめに 皆さんはご存知のとおり、AIは飛躍的な進歩を遂げ、科学者や一般の人々の想像をとらえています。ニュースやソーシャルメディアには、驚くべきAI技術の進歩が溢れています。自動運転車が道を走り、声によるアシスタントが私たちの呼びかけに応え、洗練されたアルゴリズムが私たちの生活を革新しています。それは信じられないほどのことです!これらは以前は夢に過ぎなかったことで、私たちが予想していたよりも早く現実に追いついたものです。今、この驚くべき進歩の中で、考えさせられる疑問が浮かび上がります。AIが人間の役割を置き換える世界の瀬戸際にいるのでしょうか? 人工知能は人類最後の発明になるのでしょうか? Jermey Howard 心配しないでください、まだ結論を急ぐ必要はありません。私たちはこの魅力的なトピックの深みを探求し、将来が何をもたらすかを明らかにするためにここにいます。 出典:Pixabay 歴史を通じて、私たちは働き方を変える技術的な驚異を目撃してきました。確かに、過去には機械や自動化が特定のタスクを置き換えましたが、それらは新しい産業や職種が芽生える道を開いたことでもあります。それは、私たちが以前に想像できなかったエキサイティングな仕事の機会を創出する革新と適応のサイクルです。だから、私たちは心を開いて、未来に新しい可能性に向けて飛躍しましょう。 しかし、この興味深い話題に飛び込む前に、私たちはあなたに素晴らしい機会を提供したいと思います。データサイエンスやAIに熱心なすべての人々に、高い期待を寄せられているDataHack Summit 2023に参加するようお誘いします。8月2日から5日まで、バンガロールの名門NIMHANSコンベンションセンターで開催されます。このイベントは、実践的な学習、貴重な業界の見識、そして抜群のネットワーキングの機会に満ちた、爆発的なイベントです。このようなトピックが興味を引く場合、DataHack Summit 2023の情報をここでチェックしてください。 古代から現代まで 昔は、人々はすべて自分でやらなければなりませんでした。食料を狩ったり、住居を建てたりすることは、すべて自分たちの身体労働と技能に頼っていました。しかし、産業革命やモーター革命が起こり、ゲームは完全に変わりました。 自動化が現実のものになるにつれ、人間が行っていた繰り返しの、肉体的に要求の厳しいタスクを、機械が担うようになりました。そして、それらの機械は私たちがこれまで以上に素早く、効率的にタスクを実行することができました。その結果、生産性が大幅に向上し、新しい機会の世界が開けました。 機械がこれらのタスクを担うようになると、人間は違った役割を担うようになりました。彼らはこれらの素晴らしい機械のオペレーターやメンテナンス担当者になりました。それはWin-Winの状況でした。自動化は、物事をより効率的にするだけでなく、人々に新しい仕事を創出しました。それは経済に注射されたアドレナリンのようで、成長と革新を促進しました。 芸術と革新の融合 AIは非常に驚くべきものです。数値を処理し、データを処理し、ビジネスタスクを自動化することができます。しかし、創造性や革新の世界になると、そこが人間が常に優位に立っているところです。芸術の美しさ、文学の感情、科学の画期的なアイデアを考えてみてください。それらは私たち人間だけが考え出せる特別なものとして見られています。しかし、AIはこれらの分野で私たちの創造力に本当に対抗できるのでしょうか? 出典:Freepik また読む:ニュース記事 – グラミー賞がAIを禁止:人間のクリエイターが中心に AIは確かに驚くべきスキルを発揮しています。芸術的なスタイルを再現したり、音楽を作曲したり、詩を書いたり、絵画を作ったりすることができます。まるで私たちのそばにAIアーティストやミュージシャンがいるかのようです。しかし、ここでの問題は、これらのAIによる創造物がどれだけ素晴らしいものであっても、真の人間的なタッチが欠けていることです。感情の深さや、私たち人間が作品に注ぎ込む実生活の経験などが欠けているのです。それが私たちの創造物を深遠で意義深いものにしているのです。…
グラフの復活:グラフの年ニュースレター2023年春
今日のナレッジグラフ、グラフデータベース、グラフアナリティクス、グラフAIの現在地と今後の方向性に関するニュースと分析を見つける
市民データサイエンティストとは誰で、何をするのでしょうか?
イントロダクション 今日のデータ駆動の世界において、データサイエンティストの役割は不可欠となっています。しかし、広大なデータセットに隠された謎を解くためには、データサイエンスのPh.D.を持つ必要はないと言ったらどうでしょうか?自己研鑽によって、正式な訓練を受けていないにもかかわらず、価値ある洞察を見出すスキルとツールを持つ新しいタイプの人材である「市民データサイエンティスト」の時代が到来しました。市民データサイエンティストは、形式的な訓練を受けていない普通の人々でありながら、データを行動可能な知識に変換する非凡な能力を持っており、組織が意思決定を行う方法を革新しています。本記事では、市民データサイエンティストの台頭、ビジネスへの影響、および彼らがもたらすエキサイティングな可能性について探求します。 市民データサイエンティストとは何か? 市民データサイエンティストとは、正式なデータサイエンスの訓練を受けていない個人でありながら、データを分析し洞察を導き出すスキルとツールを持っています。自己サービス型の分析プラットフォームや直感的なツールを活用して、データを探索し、モデルを構築し、データに基づく意思決定を行うことで、組織内でデータの力を民主化しています。 組織が彼らを雇うべき理由 データサイエンスは組織に著しい利益をもたらす広大な分野であり、市民データサイエンティストはデータの力を活用する上で重要な役割を担っています。以下は、企業が彼らを必要とする理由のいくつかです。 データ分析を簡素化する: 市民データサイエンティストは、さまざまな部門やチームに統合されており、特定のビジネスの課題に取り組み、それに関連するデータを探索することができます。これにより、より深い理解とより良い意思決定が可能になります。 ギャップを埋める: 彼らはドメインの専門知識とデータサイエンスの確固たる理解を持っており、技術的なスキルと業界知識をつなぐことができます。これにより、データ分析に文脈と洞察をもたらすことができます。 リアルタイムの洞察: 彼らはドメインの専門知識と自動分析ツールへのアクセス権を持っているため、リアルタイムでデータを分析し、意思決定者に迅速な洞察を提供することができます。これにより、組織は素早く対応し、機会をつかみ、リスクを効果的に軽減することができます。 フォースマルチプライヤー: 彼らはルーティンのデータ分析タスクを担当することで、データサイエンティストがより複雑な課題や戦略的なイニシアチブに注力できるようになります。彼らはフォースマルチプライヤーとして機能し、複数のチームをサポートし、全体的な生産性を向上させます。 ユニークな視点: 彼らは、データ分析に自分たちの多様な経験と専門知識をもたらし、新鮮な視点や革新的な問題解決アプローチを生み出すことができます。彼らのユニークな洞察は、しばしば新しい発見や改善された意思決定につながります。 アジャイルな実験: 市民データサイエンティストは、さまざまな分析手法を試行し、モデルを修正し、仮説をテストする柔軟性を持っています。彼らの適応力は、異なる分析手法を実験することでイノベーションを促進し、各自の分野での進歩を推進します。 必要な主要なスキル 市民データサイエンティストとして成功するために必要なスキルセットには、以下のような分析技術、技術的スキル、および専門的スキルが含まれます。 市民データサイエンティストは、Tableau、Power BI、またはMatplotlibやSeabornなどのPythonライブラリなどのプログラムを使用して、データを視覚的に解釈し、提示することができるようになっている必要があります。 彼らはデータを扱い、統計的手法を適用し、単純な機械学習モデルを開発するための基本的なプログラミングスキルを持っている必要があります。PythonやRなどのプログラミング言語に精通していることが有利です。 彼らはまた、統計学、データモデリング、データ可視化などのいくつかの分野に精通しており、データを評価・解釈し、より有用で効果的な洞察を生み出すことができます。…
事前学習済みのViTモデルを使用した画像キャプショニングにおけるVision Transformer(ViT)
はじめに 事前学習済みのViTモデルを使用した画像キャプショニングは、画像の詳細な説明を提供するために画像の下に表示されるテキストまたは書き込みのことを指します。つまり、画像をテキストの説明に翻訳するタスクであり、ビジョン(画像)と言語(テキスト)を接続することで行われます。この記事では、PyTorchバックエンドを使用して、画像のViTを主要な技術として使用して、トランスフォーマーを使用した画像キャプショニングの生成方法を、スクラッチから再トレーニングすることなくトレーニング済みモデルを使用して実現します。 出典: Springer 現在のソーシャルメディアプラットフォームや画像のオンライン利用の流行に対応するため、この技術を学ぶことは、説明、引用、視覚障害者の支援、さらには検索エンジン最適化といった多くの理由で役立ちます。これは、画像を含むプロジェクトにとって非常に便利な技術であります。 学習目標 画像キャプショニングのアイデア ViTを使用した画像キャプチャリング トレーニング済みモデルを使用した画像キャプショニングの実行 Pythonを使用したトランスフォーマーの利用 この記事で使用されたコード全体は、このGitHubリポジトリで見つけることができます。 この記事は、データサイエンスブログマラソンの一環として公開されました。 トランスフォーマーモデルとは何ですか? ViTについて説明する前に、トランスフォーマーについて理解しましょう。Google Brainによって2017年に導入されて以来、トランスフォーマーはNLPの能力において注目を集めています。トランスフォーマーは、入力データの各部分の重要性を異なる重み付けする自己注意を採用して区別されるディープラーニングモデルです。これは、主に自然言語処理(NLP)の分野で使用されています。 トランスフォーマーは、自然言語のようなシーケンシャルな入力データを処理しますが、トランスフォーマーは一度にすべての入力を処理します。注意機構の助けを借りて、入力シーケンスの任意の位置にはコンテキストがあります。この効率性により、より並列化が可能となり、トレーニング時間が短縮され、効率が向上します。 トランスフォーマーアーキテクチャ 次に、トランスフォーマーのアーキテクチャの構成を見てみましょう。トランスフォーマーアーキテクチャは、主にエンコーダー-デコーダー構造から構成されています。トランスフォーマーアーキテクチャのエンコーダー-デコーダー構造は、「Attention Is All You Need」という有名な論文で発表されました。 エンコーダーは、各レイヤーが入力を反復的に処理することを担当し、一方で、デコーダーレイヤーはエンコーダーの出力を受け取り、デコードされた出力を生成します。単純に言えば、エンコーダーは入力シーケンスをシーケンスにマッピングし、それをデコーダーに供給します。デコーダーは、出力シーケンスを生成します。 ビジョン・トランスフォーマーとは何ですか?…
類似検索、パート5:局所性鋭敏ハッシュ(LSH)
類似度検索とは、クエリが与えられたときに、データベース内のすべてのドキュメントの中から、それに最も類似したドキュメントを見つけることを目的とした問題ですデータサイエンスにおいては、類似度検索はしばしば自然言語処理において現れます...
次回のデータプロジェクトで興味深いデータセットを取得する5つの方法(Kaggle以外)
素晴らしいデータサイエンスプロジェクトの鍵は素晴らしいデータセットですが、素晴らしいデータを見つけることは言うほど簡単ではありません私がデータサイエンス修士課程を勉強していた頃を覚えていますが、それはちょうど...
7つの方法でChatGPTがあなたのコーディングをより良く、より速くします
プロジェクトの計画から本番用のコードの生成まで、ChatGPTは開発プロセス全体にわたって頼れるパートナーであり、一歩一歩有益なアシストを提供します
AI医療診断はどのように動作しますか?
医療分野では、人工知能(AI)が診断や治療計画においてますます頻繁に使用されるようになっています。近年、AIと機械学習は効果的な診断ツールとなっています。より正確な診断を提供することにより、この技術は医療を変革する可能性があります。人工知能は、医療診断におけるヘルスケアの管理、自動化、管理、ワークフローを容易にしています。医療診断におけるAIは、医療サービスの強い圧力を緩和しながら、医療の標準を変える可能性を示しています。 医療診断におけるAIアルゴリズム 以下は、医療診断においてAIが助けているいくつかの分野です。 AIアルゴリズムは医療データを分析し、診断に役立ちます 電子健康記録(EHR)、画像技術、遺伝データ、ポータブルセンサーデータなど、さまざまな種類の医療データが新しいレベルで収集されています。これらの多数のデータは、AIアルゴリズムによって処理および分析され、医療診断に役立つ示唆に富む情報を提供できます。AIアルゴリズムは、患者の病歴、症状、検査結果、およびその他の関連データを調べることによって、見積もりや概念を生み出すことができます。 機械学習とディープラーニング技術の利用 医療診断におけるAIアルゴリズムは、機械学習(ML)アプローチに大きく依存しています。ラベル付きサンプルを含む大規模なデータセットを使用して、MLシステムをトレーニングし、関係や傾向を発見することができます。ディープラーニング(DL)アルゴリズムは、腫瘍の識別、分類、および分類の効率を向上させることによって、医療画像解析を変革しました。 DLアルゴリズムは、テキストデータ、遺伝情報、医療画像など、他のデータタイプを組み合わせて、より詳細な分析を提供することもできます。診断の正確性が向上し、この包括的なアプローチにより、複雑な状態のより深い理解が可能になります。 AIがパターンを検出し、予測する能力 AIアルゴリズムは、医療従事者が見落とす可能性のある関連性、バイオマーカー、および疾患リスクを見つけるために、膨大な量のデータを分析できます。AIアルゴリズムは、複数の要因を同時に考慮することにより、個人の健康状態を包括的に見ることができます。したがって、より正確な診断と個別化された治療戦略が可能になります。 医療画像におけるAIの応用 X線、MRI、およびCTスキャンなどの医療画像の分析におけるAIの利用 AIアルゴリズムは、医療画像の処理において驚異的な能力を示しています。診断スキャンに基づく正確かつ詳細な所見を医療従事者が取得できるようにします。AIはX線画像、MRI、CTスキャンを短時間で処理することができ、人間の専門家がパターンをより速く見つけ、膨大なデータ量を分析し、関連するデータを取得するのを支援します。 異常、腫瘍、およびその他の医療状態の特定におけるAIの役割 AIは、医療画像を使用して、腫瘍、異常、およびその他の医療問題を特定することにおいて、優れた能力を発揮しています。AIアルゴリズムは、がんの場合には膨大な医療画像のコレクションを効果的に分析して腫瘍を特定および分類することができます。AI医療診断システムは、これらの結果を以前のデータと比較して、腫瘍の段階、成長率、および転移の可能性についての専門家に示唆を与え、個別化された治療計画を可能にする情報を提供できます。 AIが診断の正確性と効率を向上させる可能性 医療画像にAIを応用することによって、診断の効率と正確性を向上させる可能性があります。AI医療診断システムは、異なる視点を提供することによって放射線技師を支援し、誤解釈の可能性を減らし、全体的な診断の正確性を高めることができます。また、画像解析を高速化することにより、より迅速な対応とより効果的な医療ケアが可能になります。 疾患の早期検出および予防のためのAI AIによる早期疾患検出およびリスク評価の利用 AIは、広範な患者記録を分析し、病気の存在を示唆する微小なパターンや異常を見つけることによって、早期の疾患認識に重要な役割を果たしています。AIツールは、医療記録、画像研究、スマートデバイスデータなど、様々なデータセットから学習することができます。危険因子や早期警告の兆候を特定することができます。 AIによる患者データ、遺伝情報、およびバイオマーカーの分析の応用 AIは遺伝データを評価し、特定の疾患の発症リスクが高い遺伝子変異を見つけることができます。AI医療診断システムは、遺伝子データをライフスタイル、環境効果、および医療歴に影響を与える要因と統合して、個別のリスク評価スコアを生成することができます。これにより、患者は健康に関する情報を得て、予防措置を取ることができます。また、AIは、血液検査や画像結果などのバイオマーカーを評価し、臨床的に明らかになっていない疾患関連の早期警告症状を見つけることができます。 関連記事:症状が現れる数年前にパーキンソン病を検出するAIツールの開発 AIによる個別化医療と予防医療の支援の可能性…
2023年に知っておくべきトップ10のパワフルなデータモデリングツール
イントロダクション データ駆動型の意思決定の時代において、競争力を維持するために正確なデータモデリングツールを持つことは企業にとって不可欠です。新しい開発者として、堅牢なデータモデリングの基礎は、データベースを効果的に扱うために重要です。適切に構成されたデータ構造は、スムーズなワークフローを確保し、データの損失や誤配置を防止します。 大規模で複雑なタスクに取り組むために、データモデリングツールを利用することがますます重要になっています。これらのツールは時間を節約するだけでなく、データモデリングのプロセスを簡素化することができます。 トランスフォーメーションに寄与するトップ10のデータモデリングツールを発見してください。効率性を求める経験豊富なプロフェッショナルから、ユーザーフレンドリーなソリューションを求める初心者まで、あなたのニーズに合わせて提供します。データの真のポテンシャルを引き出し、自信を持って賢い決定をする旅に出ましょう! データモデリングツールとは何ですか? データモデルは、UML図を使用してしばしば視覚的にデータ仕様を表します。データはSQLまたはNoSQLデータベースに格納され、データモデリングにはどの情報を収集し、どのように格納するかを決定することが含まれます。 データモデリングツールは、データモデリングプロセスを効率化するために使用されます。これらのツールは、データとその複数のモデル層との間のギャップを埋めます。これらのツールは、既存のデータベースをリバースエンジニアリングし、スキーマとモデルを比較およびマージし、自動的にデータベーススキーマまたはDTDを生成することができます。 効果的なデータモデリングソフトウェアは、魅力的な視覚的表現とデータベースとのシームレスな統合を提供します。ユーザーフレンドリーなデータモデリングツールは、概念的なデータモデリングをよりアクセスしやすくします。 データモデリングツールを選ぶ際に考慮すべきことは何ですか? データモデリングツールを選ぶ際には、特定のニーズを決定することが重要です。必須要件と望ましい要件を分類し、後者を優先させます。この決定は長期的な影響を持つ可能性があるため、組織内のさまざまな視点からの意見を考慮してください。 すべてのデータモデリングツールが物理モデルと論理モデルの作成、リバースエンジニアリング、およびフォワードエンジニアリングなどの基本的なタスクを処理できますが、追加の要因も考慮する必要があります。これには、チームベースのモデリング機能、バージョニング、図のカスタマイズオプション、モデルリポジトリの機能、概念的なデータモデルのサポート、エンタープライズメタデータリポジトリとの統合、および異なるモデルレベル(概念的、論理的、物理的)にわたるオブジェクトラインの維持のためのデータ合理化が含まれます。これらの要因は、あなたのデータモデリングニーズについての情報を提供し、適切な選択をするのに役立ちます。 トップ10のデータモデリングツール 1. ER/Studio Embarcadero Technologiesが開発したER/Studioは、データアーキテクト、モデラー、DBA、ビジネスアナリストにとって有用であり、データベース設計とデータ再利用を管理するために役立ちます。ツールによって、データベースコードを自動的に生成することができます。 属性と定義の完全なドキュメントを備えたツールは、ビジネスコンセプトをモデリングするのに役立ちます。 特徴 論理モデルと物理モデルの両方をサポート ツールによって、新しいデータベースの変更に対する影響分析が実施されます。 自動化とスクリプトのサポート サポートされるプレゼンテーションファイルの種類には、HTML、PNG、JPEG、RTF、XML、Schema、DTDが含まれます。 ER/Studioによって、モデルとデータベースの一貫性が保証されます。 価格…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.