Learn more about Search Results GitHub - Page 132
- You may be interested
- Hugging Faceのパネル
- 「SageMaker Distributionは、Amazon Sage...
- 「注意 シンクとキャッシュの配置場所 ...
- NVIDIAの創設者兼CEO、ジェンセン・ファン...
- 「意思決定科学は静かに新しいデータサイ...
- 「愛らしい3Dクリーチャーが、今週「NVIDI...
- Rにおける二元配置分散分析
- 「ZoomがAIトレーニングのために顧客デー...
- 敵対的なバイアス排除とは、公正な分類を...
- 「マイクロソフトのシニアデータサイエン...
- 「IBMの「脳のような」AIチップが、環境に...
- PyTorch LSTMCell — 入力、隠れ状態、セル...
- イタリアの新しいAI研究は、音楽合成と音...
- イーロン・マスク氏とXAiチームがGrokを発...
- 分散システム設計におけるコンセンサスア...
Netflix株の時系列分析(Pandasによる)
はじめに データの時系列分析は、この場合はNetflixの株式などの数字の集まりだけではありません。Pandasと組み合わさることで、複雑な世界の物語を魅力的に紡ぐ織物のようなものです。神秘的な糸のように、出来事の起伏や流れ、トレンドの上昇や下降、そしてパターンの出現を捉えます。それは、私たちの現実を形作る隠されたつながりや相関関係を明らかにし、過去の生き生きとした描写を提供し、未来の一端を垣間見るものです。 時系列分析は単なるツール以上のものです。それは知識と洞察を得るためのゲートウェイであります。時間に関するデータの秘密を解き明かし、生の情報を貴重な洞察に変える力を与え、情報をもとに妥当な決定を下し、リスクを軽減し、新しい機会を活用する手助けをします。 このエキサイティングな冒険に一緒に乗り出し、時系列分析の魅力的な領域に飛び込んでみましょう! 学習目標 時系列分析の概念を紹介し、そのさまざまな分野での重要性を強調し、実際の例を示して、時系列分析の実用的な応用を紹介します。 Pythonとyfinanceライブラリを使用してNetflixの株式データをインポートする方法を実演することで、時系列データを取得し、分析のために準備するための必要な手順を学びます。 最後に、シフト、ローリング、およびリサンプリングなどの時系列分析で使用される重要なPandas関数に焦点を当て、時系列データを効果的に操作および分析するための方法を示します。 この記事は、Data Science Blogathonの一環として公開されました。 時系列分析とは何ですか? 時系列とは、連続的かつ等間隔の時間間隔で収集または記録されたデータのシーケンスです。 時系列分析は、時間によって収集されたデータポイントを分析する統計的技術です。 これには、データの視覚化、統計モデリング、予測方法などの技術が含まれます。 順次データのパターン、トレンド、依存関係を研究し、洞察を抽出し、予測を行うことが含まれます。 時系列データの例 株式市場データ:歴史的な株価を分析してトレンドを特定し、将来の価格を予測する。 天気データ:時間の経過に伴って温度、降水量、その他の変数を研究して、気候パターンを理解する。 経済指標:GDP、インフレ率、失業率を分析して、経済のパフォーマンスを評価する。 売上データ:時間の経過に伴って売上高を調べ、パターンを特定し、将来の売上高を予測する。 ウェブトラフィック:ウェブトラフィックメトリックを分析して、ユーザーの行動を理解し、ウェブサイトのパフォーマンスを最適化する。 時系列の構成要素 時系列の4つの構成要素があります。それらは次のとおりです。…
PatchTST 時系列予測における画期的な技術革新
トランスフォーマーベースのモデルは、自然言語処理の分野(BERTやGPTモデルなど)やコンピュータビジョンなど、多くの分野で成功を収めていますしかし、時間の問題になると...
レトロなデータサイエンス:YOLOの最初のバージョンのテスト
データサイエンスの世界は常に変化していますしばしば、変化がゆっくりと進んでいるため、私たちはそれらを見ることができないことがありますが、時間が経過すると、風景が見えやすくなります...
SeabornとMatplotlibを使用して美しい年齢分布グラフを作成する方法(アニメーションを含む)
今日は、matplotlibとseabornを使って上記のような美しい年齢分布グラフを作成する方法を紹介したいと思います年齢分布グラフは、人口統計の視覚化に優れています...
アルトコインへの投資:暗号市場の包括的ガイド
アルトコインとは、ビットコインの後に登場した他の暗号通貨のことですこれらのデジタル通貨は、分散型ブロックチェーン技術を介して運営され、先駆的な暗号通貨であるビットコインとは異なる用途を提供しています 「アルトコイン」という用語は、暗号空間で数年間使用されており、ビットコインを除く多数の暗号通貨を指します… アルトコインへの投資:暗号市場の包括的ガイド 詳細はこちら»
MatplotlibのチャートをHTMLページに埋め込む3つの方法
Pythonには、データ可視化を含むさまざまな操作を実行するための多くのライブラリが用意されていますただし、Matplotlibを使用して作成したチャートをHTMLページに統合することは複雑な場合があります最も簡単な方法は…
2023年の製品マネージャーにとって最高のAIツール
AI市場の急速な拡大は、製品マネージャーの生産性向上に加えて、新しい職種の出現を促進する可能性があることに多くの人々が驚嘆しています。しかし、数千ものツールがアクセス可能で、毎週さらに多くのツールが登場すると、圧倒されてしまうことが簡単です。 ClickUp ClickUpは、あらゆる規模やセクターのチーム間のコミュニケーションを促進するオールインワンのプロジェクト管理ツールです。製品の作成や計画などのタスクに対して、使いやすく、適応性が高いため、製品管理の解決策として、ClickUpは主要な位置を占めています。多数のプレメイドの製品チームテンプレートを備えた高度に柔軟なプラットフォームであり、ClickUpの適応性と有用なツールにより、どのチームでもプラットフォームを自分たちのニーズやワークフローのニュアンスに合わせてカスタマイズできます。 Jam JamGPTは、製品マネージャーが問題を理解し、エンジニアリングチームに伝えることができる潜在的な修正箇所を見つけるのを支援する最新のAIツールです。生産性が向上し、技術的な議論にアクセスできるようになります。製品マネージャーが非技術的な背景でもコンテキストを提供できるJamGPTの容量は、各レベルでの機能の展開を容易にするものです。ClickUp、Slack、またはGithubなどのプロジェクト管理ツールに、インテリジェントなAIアシスタントと主要なバグレポート機能で収集された貴重なデータを統合することで、製品の改善の共有と作業がスムーズになります。 Motion Motionは、AIを利用して、ミーティング、タスク、プロジェクトを考慮した日々のスケジュールを作成する賢明なツールです。計画の手間を省いて、より生産的な生活を始めましょう。 ChatGPT ほとんどの質問に適切な回答を提供することで、検索エンジンクエリーよりも優れた体験を製品マネージャーに提供することで、ChatGPTは最も人気のある自然言語処理(NLP)ツールの1つになりました。製品マネージャーが行ったテストでは、結果は彼らが尋ねた質問に敏感であることが示されました。 ChatGPTの適応性は、主要なセールスポイントです。製品の成長、顧客サービスなどを向上させるためにユニークな質問に回答することができます。製品マネージャーにとって役立つため、提出されたデータを分析して顧客の痛点を特定し、次に開発する製品のアイデアを提供し、感情分析を実行することができます。 Canva Canvaの無料の画像ジェネレーターは、製品マネージャーの日々の業務にどれだけ役立つかを簡単に確認できます。ステークホルダーミーティング、製品ローンチなどでプレゼンテーションやデッキに使用する適切なビジュアルを見つけることは常に難しかったです。しばしば、望むものを明確に心に描いているのに、利用可能なストック写真を修正する必要があります。CanvaのAI駆動エディタを使用すると、トピックをブレインストーミングし、入力に基づいて理想のビジュアルを見つけるための検索結果を微調整できます。 TLDV 正直に言いますと、製品マネージャーとしてのあなたの時間の多くはミーティングに費やされます。ステークホルダーに新しい製品機能を提示したり、エンジニアリングチームにそれを販売しようとしたりする場合には、強力なプレゼンテーションが不可欠です。TLDVは、ミーティングのノートを取り、それらを箇条書きにまとめて、より生産的になるためのAIプログラムです。ユーザーとのインタビューで最大限に活用するには、ノートを取ることに心を配る必要があります。TLDVは、そのような問題を解決します。 Notion 最も人気のあるノートアプリの1つであるNotionは、最新のAI機能でアップグレードされました。これにより、製品マネージャーは、ビジネスウィキや製品ロードマップを確立するための能力の高い人工知能の支援を受け、コミュニケーションを改善し、要約などの繰り返しの作業にかかる時間を削減することができます。 Otter.AI Otter.aiは、会議や議論を正確に記録し、転写するAI駆動プラットフォームです。AIを活用して、会話を瞬時に転写し、検索可能でアクセス可能で暗号化されたメモを簡単に共有できるようにします。 Otterは、自動的にZoom、Microsoft Teams、Google Meetミーティングに参加して録音することができます。キーポイントが強調され、タスクが割り当てられ、簡単に共有および呼び出せる要約が生成されます。ビジネス、教育、個人設定のユーザーが、iOS、Android、Chromeで時間を節約するのに役立つと感じています。多くのユーザーは、その精度、多様性(さまざまなスピーカーから転写できる)、時間を節約する自動スライドキャプチャ機能を称賛しています。 Collato あなたのチームが生成した書類の山から特定の製品情報を追跡できないですか?Collatoは、チームの人々が必要とする情報を追跡し、クリックひとつで簡単に利用できるようにする人工知能アシスタントです。製品マネージャーは、様々な技術をシングルビジュアルマップに同期し、統合することにより、情報のサイロを減らすことができます。製品ロードマップの重要な文書が紛失した際に毎回30分を無駄にする代わりに、必要なすべての情報に簡単にアクセスできるようになります。 Midjourney…
新たな能力が明らかに:GPT-4のような成熟したAIのみが自己改善できるのか?言語モデルの自律的成長の影響を探る
研究者たちは、AlphaGo Zeroと同様に、明確に定義されたルールで競争的なゲームに反復的に参加することによってAIエージェントが自己発展する場合、多くの大規模言語モデル(LLM)が人間の関与がほとんどない交渉ゲームでお互いを高め合う可能性があるかどうかを調査しています。この研究の結果は、遠い影響を与えるでしょう。エージェントが独立に進歩できる場合、少数の人間の注釈で強力なエージェントを構築することができるため、今日のデータに飢えたLLMトレーニングに対して対照的です。それはまた、人間の監視がほとんどない強力なエージェントを示唆しており、問題があります。この研究では、エジンバラ大学とAIアレン研究所の研究者が、顧客と売り手の2つの言語モデルを招待して購入の交渉を行うようにしています。 図1:交渉ゲームの設定。彼らは2つのLLMエージェントを招待して、値切りのゲームで売り手と買い手をプレイさせます。彼らの目標は、より高い値段で製品を販売または購入することです。彼らは第三のLLMであるAI批評家に、ラウンド後に向上させたいプレイヤーを指定してもらいます。その後、批判に基づいて交渉戦術を調整するようにプレイヤーに促します。これを数ラウンド繰り返すことで、モデルがどんどん上達するかどうかを確認します。 顧客は製品の価格を下げたいと思っていますが、売り手はより高い価格で販売するように求められています(図1)。彼らは第三の言語モデルに批評家の役割を担ってもらい、取引が成立した後にプレイヤーにコメントを提供させます。次に、批評家LLMからのAI入力を利用して、再度ゲームをプレイし、プレイヤーにアプローチを改善するように促します。彼らは交渉ゲームを選んだ理由は、明確に定義されたルールと、戦術的な交渉のための特定の数量化目標(より低い/高い契約価格)があるためです。ゲームは最初は単純に見えますが、モデルは次の能力を持っている必要があります。 交渉ゲームのテキストルールを明確に理解し、厳密に遵守すること。 批評家LLMによって提供されるテキストフィードバックに対応し、反復的に改善すること。 長期的にストラテジーとフィードバックを反映し、複数のラウンドで改善すること。 彼らの実験では、モデルget-3.5-turbo、get-4、およびClaude-v1.3のみが交渉ルールと戦略を理解し、AIの指示に適切に合致している必要があるという要件を満たしています。その結果、彼らが考慮したモデルすべてがこれらの能力を示さなかったことが示されています(図2)。初めに、彼らはボードゲームやテキストベースのロールプレイングゲームなど、より複雑なテキストゲームもテストしましたが、エージェントがルールを理解して遵守することがより困難であることが判明しました。彼らの方法はICL-AIF(AIフィードバックからのコンテキスト学習)として知られています。 図2:私たちのゲームで必要な能力に基づいて、モデルは複数の階層に分けられます(C2-交渉、C3-AIフィードバック、C4-継続的な改善)。私たちの研究は、gpt-4やclaude-v1.3などの堅牢で適切に合致したモデルだけが反復的なAI入力から利益を得て、常に発展することができることを明らかにしています。 彼らは、AI批評家のコメントと前回の対話履歴ラウンドをコンテキストに応じたデモンストレーションとして利用しています。これにより、プレイヤーの前回の実際の開発と批評家の変更アイデアが、次のラウンドの交渉のためのフューショットキューに変換されます。2つの理由から、彼らはコンテキストでの学習を使用しています:(1)強化学習を用いた大規模な言語モデルの微調整は、高額であるため、(2)コンテキストでの学習は、勾配降下に密接に関連していることが最近示されたため、モデルの微調整を行う場合には、彼らが引き出す結論がかなり一般的になることが期待されます(資源が許される場合)。 人間からのフィードバックによる強化学習(RLHF)の報酬は通常スカラーですが、ICL-AIFでは、フィードバックが自然言語で提供されます。これは、2つのアプローチの注目すべき違いです。各ラウンド後に人間の相互作用に依存する代わりに、よりスケーラブルでモデルの進歩に役立つAIのフィードバックを検討しています。 異なる責任を負うときにフィードバックを与えられた場合、モデルは異なる反応を示します。バイヤー役のモデルを改善することは、ベンダー役のモデルよりも難しい場合があります。過去の知識とオンライン反復的なAIフィードバックを利用して、get-4のような強力なエージェントが常に意味のある開発を続けることができるとしても、何かをより高く売る(またはより少ないお金で何かを購入する)ことは、全く取引が成立しないリスクがあります。彼らはまた、モデルがより簡潔であるがより綿密(そして最終的にはより成功する)交渉に従事できることを証明しています。全体的に、彼らは自分たちの仕事がAIフィードバックのゲーム環境での言語モデルの交渉を向上させる重要な一歩になると期待しています。コードはGitHubで利用可能です。
最初のLLMアプリを構築するために知っておく必要があるすべて
言語の進化は、私たち人類を今日まで非常に遠くまで導いてきましたそれによって、私たちは知識を効率的に共有し、現在私たちが知っている形で協力することができるようになりましたその結果、私たちのほとんどは...
言語学習モデルにおけるOpenAIの関数呼び出しの力:包括的なガイド
OpenAIの関数呼び出し機能を使用したデータパイプラインの変換:PostgreSQLとFastAPIを使用した電子メール送信ワークフローの実装
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.