Learn more about Search Results on - Page 12
- You may be interested
- 「リサーチアナリストになるには? 職務内...
- 📱 アップルが不正な認証からのiMessageア...
- 知られていないジュリア魔法のすごさ
- 『ScaleCrafterを知る:事前学習済みの拡...
- 「機械学習評価指標 理論と概要」
- 「OpenAIのGPTストアで稼ぐための11のカス...
- マイクロソフトの研究者たちは「エモーシ...
- 「交通バスのカメラを使用して交通を監視...
- 「Pythonコードを使用したダイレクトマー...
- イェール大学とGoogle DeepMindの研究者は...
- Sklearnの交差検証の可視化:K-Fold、シャ...
- 未来を点火する:TensorRT-LLMのリリース...
- 「LLMの内部構造:言語モデルアーキテクチ...
- KAIST(韓国科学技術院)からの新しいAI研...
- 「Reactを使用して、エキサイティングなデ...
Amazon Transcribeは、100以上の言語に対応する新しいスピーチ基礎モデル搭載のASRシステムを発表しました
アマゾン・トランスクライブは、完全に管理された自動音声認識(ASR)サービスであり、アプリケーションに音声からテキストへの機能を追加することが簡単になります本日、私たちは次世代の数十億パラメータ音声基礎モデル駆動のシステムを発表し、自動音声認識を100以上の言語に拡張することをうれしく思いますこの記事では、いくつかの話題について説明します
医療画像AIがより簡単になりました:NVIDIAがMONAIをホステッドクラウドサービスとして提供
本日、NVIDIAは医療画像AIのためのクラウドサービスを立ち上げました。これにより、完全に管理され、クラウドベースのAPIを通じてグランドトゥルースデータの作成と専門的なAIモデルのトレーニングをスムーズ化し、加速させることができます。 NVIDIA MONAIクラウドAPIは、この週にシカゴで開催される北米放射線学会の年次総会(RSNA)で発表され、開発者とプラットフォームプロバイダが事前にトレーニングされた基礎モデルを使用し、企業向けのAIワークフローを統合するための迅速なパスを提供します。これらのAPIは、NVIDIAとキングズカレッジロンドンによって設立されたオープンソースのMONAIプロジェクトに基づいて構築されています。 医療画像は医療分野全体で重要な役割を果たしており、医療データの約90%を占めています。これは放射線科医や臨床医がスクリーニング、診断、介入を行うために使用されるほか、バイオファーマの研究者が臨床試験患者が新薬にどのように反応するかを評価するために使用され、医療機器メーカーはリアルタイムの意思決定支援を提供します。 これらの領域における作業の規模は、医療画像専用のAIファクトリーを必要とします。これはエンタープライズグレードのプラットフォームであり、大規模なデータ管理を提供し、グランドトゥルースのアノテーションを作成し、モデルの開発を加速し、シームレスなAIアプリケーションの展開を確立します。 NVIDIA MONAIクラウドAPIを使用することで、ソリューションプロバイダは医療画像プラットフォームにAIをより簡単に統合することができます。これにより、放射線科医、研究者、臨床試験チームがドメインに特化したAIファクトリーを構築するための高速ツールを提供することができます。これらのAPIは、NVIDIA DGX Cloud AIスーパーコンピューティングサービスを通じて早期アクセスで利用可能です。 NVIDIA MONAIクラウドAPIは、AI開発のためのエンドツーエンドワークフローをサポートする主要な医療画像データおよびAIプラットフォームであるFlywheelに統合されています。RedBrick AIなどの医療画像アノテーション企業の開発者やDataikuなどの機械学習オペレーション(MLOps)プラットフォームプロバイダは、NVIDIA MONAIクラウドAPIを自社の提供物に統合する予定です。 医療画像のための準備完了のアノテーションとトレーニング 効率的かつコスト効果の高いAIソリューションを構築するには、ソフトウェアのためのフルスタック最適化、スケーラブルなマルチノードシステム、最新の研究など、堅牢でドメインに特化した開発基盤が必要です。また、高品質なグランドトゥルースデータも必要ですが、特に3D医療画像では専門知識が高度に必要なアノテーションのため、煩雑で時間がかかる場合があります。 NVIDIA MONAIクラウドAPIには、VISTA-3D(Vision Imaging Segmentation and Annotation)の基礎モデルによるインタラクティブなアノテーション機能が搭載されています。これにより、ユーザーのフィードバックと新しいデータに基づいて、AIモデルのパフォーマンスが向上します。 VISTA-3Dは、さまざまな疾患と体の部位にわたる4,000人以上の患者の3D CTスキャンからアノテーション付き画像のデータセットでトレーニングされており、医療画像解析のための3Dセグメンテーションマスクの作成を加速します。そして、継続的な学習により、AIモデルのアノテーション品質が時間とともに向上します。…
(Donna data no shigoto demo ukeru to iu koto wa, kariara toshite saiaku no sentaku deari, kawari ni nani o subeki ka)
厳しい就職市場によって、仕事ではなく命を賭けてハンガーゲームのように戦っているような気持ちになっていませんか?もしあなたがもう投げやりになることを考えている段階まで来ているなら、
In this article, we will explore the fascinating world of NOIR, Stanford University’s mind-controlled AI robot.
「物事がもうこれ以上狂ったことになり得ないと思っていたときに、スタンフォード大学が心の力で動かせるロボットを発表しましたしかし、それはどのように機能するのでしょうか?」
「snnTorchとは:スパイキングニューラルネットワークを利用した勾配ベースの学習を行うためのオープンソースのPythonパッケージ」
人工知能において、効率性と環境への影響が最も重要な関心事となりました。これに対応するために、UCサンタクルーズのジェイソン・エシュラギアン氏は、脳のデータ処理における驚異的な効率性からインスピレーションを得て、脳神経回路を実装するオープンソースのPythonライブラリであるsnnTorchを開発しました。研究で強調されるポイントは、従来のニューラルネットワークの非効率性とそのエネルギー消費の拡大による環境への影響です。 従来のニューラルネットワークは、脳の処理メカニズムの洗練さに欠けています。脳神経回路は、データが入力された場合のみニューロンを活性化させることで、データを継続的に処理する従来のネットワークとは異なります。エシュラギアン氏は、生物学的システムで観察される効率性を人工知能に注入し、現在のニューラルネットワークのエネルギー消費の問題に対する具体的な解決策を提供することを目指しています。 snnTorchは、パンデミック発生時に生まれた情熱的なプロジェクトであり、100,000を超えるダウンロードを達成しました。その応用範囲は、NASAの衛星追跡からGraphcoreなどの企業との協力に及び、AIチップの最適化を目指します。snnTorchは、脳の効率性を活用し、それをAIの機能にシームレスに統合することを約束しています。チップ設計のバックグラウンドを持つエシュラギアン氏は、ソフトウェアとハードウェアの共同設計による最大の電力効率の実現によってコンピューティングチップの最適化の可能性を見出しています。 snnTorchの採用が拡大するにつれて、教育リソースの需要も増えています。エシュラギアン氏の論文は、ライブラリのコードを文書化するだけでなく、脳に触発された人工知能の教育リソースとしても役立ちます。この論文は、不確実性がある領域の不安を抱えた状況でさえも専門家が苦労する分野で学生が挫折することを避けるために、特に正直なアプローチを取っています。 この研究の正直さは、従来の研究論文とは異なり、コードブロックを表示することによって示されています。これらのブロックは、説明付きで、特定の領域の不確定性を強調し、しばしば不透明な領域に透明性を提供します。エシュラギアン氏は、自身のコーディングの道程で願っていたリソースを提供することを目指しています。この透明性は、ニューロモーフィックハードウェアのスタートアップのオンボーディングで使用される研究の報告書としても好意的に受け入れられています。 この研究は、脳に触発された深層学習の制限と可能性を探求し、脳プロセスとAIモデルの理解の隔たりを認識しています。エシュラギアン氏は、相関と相違点を特定することによって前進する道を提案しています。一つの重要な違いは、脳が過去のデータに再訪しないことで、リアルタイムの情報に焦点を当てる点です。これは、持続可能なAIにとって重要なエネルギー効率の向上の機会です。 この研究は、脳神経科学の基本的な概念である「一緒に消耗する」に掘り下げます。これは、深層学習のバックプロパゲーションとは対立すると従来考えられていましたが、研究者は相補的な関係を提案し、探索の可能性を開きます。生体分子工学の研究者との協力により、生物学的モデルとコンピューティング研究のギャップが埋まります。ソフトウェア/ハードウェアの共同設計パラダイムに「ウエットウェア」を組み込むことで、この多分野のアプローチは脳に触発された学習についての洞察を約束します。 まとめると、snnTorchとその論文は、脳に触発されたAIに向かう旅路における重要な節目です。その成功は、従来のニューラルネットワークに対する省エネルギーソリューションへの需要を示しています。研究者の透明で教育的なアプローチは、ニューロモーフィックコンピューティングの限界を押し広げるために献身的なコミュニティの形成を促しています。snnTorchの洞察に導かれるこの分野は、AIを革新し、人間の脳のプロセスに対する理解を深める可能性を秘めています。
「Pythonを用いた巡回セールスマン問題の実装、解決、および可視化」
この記事は、スプリント2で終了したところから旅を続けますここでは、前の記事で提案した数学モデルを取り上げ、Pyomoを使用してPythonで実装します
エラスティックサーチでシノニムを便利に更新するためにSynonyms APIを使用してください
Elasticsearchのシノニム機能は非常に強力であり、適切に使用すれば検索エンジンの効率を大幅に向上させることができますシノニム機能を使用する際の一般的な問題は、更新することです
「SnapLogicがAmazon Bedrockを使用してテキストからパイプラインアプリケーションを構築し、ビジネスの意図を行動に変換します」
この投稿は、SnapLogicのChief ScientistであるGreg Benson、Sr. Product ManagerであるAaron Kesler、Enterprise Solutions ArchitectであるRich Dillと共同で執筆されました多くのお客様がAmazon BedrockとAmazon CodeWhisperer上で生成型AIアプリを構築し、自然言語に基づくコードアーティファクトを作成していますこのユースケースでは、大規模な言語モデル(LLM)がどのようにして[…]を行っているかを強調しています
アイドルアプリの自動シャットダウンを使用して、Amazon SageMaker Canvasのコストを最適化する
『Amazon SageMaker Canvas』は、豊富なノーコードの機械学習(ML)と生成型AIのワークスペースで、視覚的かつノーコードのインターフェースを通じて、世界中のお客様が既存および新たな課題を解決するためにML技術をより簡単に採用できるようにしましたこれは、MLワークフローを終端までカバーしており、強力なデータの検索が必要な場合でも、[…]
「Amazon SageMaker Studioを使用してBMWグループのAI/MLの開発を加速」
この記事は、BMWグループのマルク・ノイマン、アモール・シュタインベルク、マリヌス・クロメンフックと共同で執筆されましたBMWグループは、ドイツ・ミュンヘンに本社を置き、世界中で149,000人の従業員を擁し、15カ国にわたる30を超える生産・組み立て施設で製造を行っています今日、BMWグループは世界のプレミアム自動車メーカーのリーディングカンパニーです
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.