Learn more about Search Results Discord - Page 12
- You may be interested
- 「リトリーバル増強生成」とは何ですか?
- 「大規模な言語モデルを使ったフェイクニ...
- ITUデンマークの研究者は、神経発達プログ...
- 「AIによる完全自律戦争の未来がここにある」
- ExcelのVBAを使用してプロジェクトの更新...
- 「二つの封筒の問題」
- 「データサイエンスのトップ7の無料クラウ...
- 「CMUの研究者たちは、スロット中心のモデ...
- 機械学習エンジニアリングチームの炭素排...
- 「データセンターは冷房を少なくしても同...
- アフリカにおける機械学習の強化を推進す...
- 「PythonとMatplotlibを使用して極座標ヒ...
- Visual BERTのマスタリー | 最初のエンカ...
- BERTopic(バートピック):v0.16の特別さ...
- 「7/8から13/8までの週のトップ重要なコン...
Hugging FaceでのDecision Transformersの紹介 🤗
🤗 Hugging Faceでは、ディープ強化学習の研究者や愛好家向けのエコシステムに貢献しています。最近では、Stable-Baselines3などのディープRLフレームワークを統合しました。 そして、今日は喜んでお知らせします。オフライン強化学習手法であるDecision Transformerを🤗 transformersライブラリとHugging Face Hubに統合しました。ディープRLの分野でアクセシビリティを向上させるための興味深い計画があり、これからの数週間や数ヶ月でそれを共有できることを楽しみにしています。 オフライン強化学習とは何ですか? Decision Transformerの紹介 🤗 TransformersでDecision Transformerを使用する まとめ 次は何ですか? 参考文献 オフライン強化学習とは何ですか? ディープ強化学習(RL)は、意思決定エージェントを構築するためのフレームワークです。これらのエージェントは、試行錯誤を通じて環境との相互作用を通じて最適な行動(ポリシー)を学び、報酬を受け取ることでユニークなフィードバックを得ることを目指します。 エージェントの目標は、累積報酬であるリターンを最大化することです。なぜなら、RLは報酬の仮説に基づいているからです:すべての目標は、期待累積報酬を最大化することとして記述できるからです。 ディープ強化学習エージェントは、バッチの経験を使用して学習します。問題は、どのようにしてそれを収集するかです: オンラインとオフラインの設定での強化学習の比較、この投稿からの図 オンライン強化学習では、エージェントは直接データを収集します:環境との相互作用によってバッチの経験を収集します。その後、この経験を即座に(または一部のリプレイバッファを介して)使用して学習します(ポリシーを更新します)。 しかし、これはエージェントを実際の世界で直接トレーニングするか、シミュレータを持っている必要があることを意味します。もしそれがなければ、環境の複雑な現実をどのように反映させるか(環境での複雑な現実を反映させる方法は?)という非常に複雑な問題、高価な問題、そして安全性の問題があります。なぜなら、シミュレータに欠陥があれば、競争上の優位性を提供する場合はエージェントがそれを悪用する可能性があるからです。…
機械学習の専門家 – ルイス・タンストール
🤗 マシンラーニングエキスパートへようこそ – ルイス・タンストール こんにちは、みなさん!マシンラーニングエキスパートへようこそ。私は司会のブリトニー・ミュラーです。今日のゲストはルイス・タンストールさんです。ルイスさんはHugging Faceのマシンラーニングエンジニアで、トランスフォーマーを使ってビジネスプロセスを自動化し、MLOpsの課題を解決するための取り組みを行っています。 ルイスさんは、NLP、トポロジカルデータ解析、時系列の領域でスタートアップや企業向けに機械学習アプリケーションを開発してきました。 ルイスさんは、彼の新しい本、トランスフォーマー、大規模モデルの評価、MLエンジニアがより高速なレイテンシとスループットを目指すための最適化方法などについて話します。 以前は理論物理学者であり、仕事以外ではギターを弾いたり、トレイルランニングをしたり、オープンソースプロジェクトに貢献したりすることが好きです。 この楽しくて素晴らしいエピソードを紹介するのをとても楽しみにしています!ここで私がルイス・タンストールさんとの会話をお届けします。 注:転写はわかりやすい読みやすい体験を提供するために、わずかに修正/再フォーマットされています。 ようこそ、ルイスさん!お忙しい中、私との素晴らしいお仕事についてお話しいただき、本当にありがとうございます! ルイス: ありがとうございます、ブリトニーさん。こちらこそ、ここにいさせていただけて光栄です。 簡単な自己紹介と、Hugging Faceへの経緯について教えていただけますか? ルイス: 私をHugging Faceに導いたものはトランスフォーマーです。2018年、私はスイスのスタートアップでトランスフォーマーを使って仕事をしていました。最初のプロジェクトは、テキストを入力してそのテキスト内の質問に答えを見つけるためのモデルを訓練する質問応答のタスクでした。 当時のライブラリは「pytorch-pretrained-bert」という名前で、いくつかのスクリプトを持つ非常に特化したコードベースでした。私はトランスフォーマーについて何が起こっているのか全くわからず、オリジナルの「Attention Is All You Need」という論文を読んでも理解できませんでした。そこで他の学習リソースを探し始めました。…
Hugging Faceハブへ、fastaiさんを歓迎します
ニューラルネットを再びクールじゃなくする…そして共有する Deep Learningのアクセシビリティを高めるために、fast.aiエコシステムは他に類を見ない成果を上げてきました。Hugging Faceの使命は、優れた機械学習を民主化することです。機械学習へのアクセスの排他性、事前学習済みモデルを過去のものとし、この素晴らしい領域をさらに推進しましょう。 fastaiは、PyTorchとPythonを活用して、テキスト、画像、表形式のデータに対して最新の出力を備えた高速かつ正確なニューラルネットワークをトレーニングするためのハイレベルなコンポーネントを提供するオープンソースのDeep Learningライブラリです。ただし、fast.aiは単なるライブラリ以上のものです。それはオープンソースの貢献者とニューラルネットワークの学習に取り組む人々の繁栄するエコシステムに成長しました。いくつかの例として、彼らの書籍やコースをチェックしてみてください。fast.aiのDiscordやフォーラムに参加してください。彼らのコミュニティに参加することで、確実に学びが得られます! これら全ての理由から(この記事の執筆者はfast.aiのコースのおかげで自分の旅をスタートさせました)、私たちは誇りを持ってお知らせします。fastaiのプラクティショナーは、Pythonの一行でモデルをHugging Face Hubに共有・アップロードすることができるようになりました。 👉 この記事では、fastaiとHubの統合について紹介します。さらに、このチュートリアルをColabノートブックとして開くこともできます。 fast.aiコミュニティ、特にJeremy Howard、Wayde Gilliam、Zach Muellerにフィードバックをいただいたことに感謝します 🤗。このブログは、fastaiドキュメントのHugging Face Hubセクションに強く触発されています。 Hubに共有する理由 Hubは、モデル、データセット、MLデモを共有・探索できる中央プラットフォームです。最も広範なオープンソースのモデル、データセット、デモのコレクションを提供しています。 Hubで共有することで、あなたのfastaiモデルの影響力を広げ、他の人がダウンロードして探索できるようにします。また、fastaiモデルを転移学習に利用することもできます。他の誰かのモデルをタスクの基礎として読み込むことができます。 誰でも、hf.co/modelsのウェブページでfastaiライブラリをフィルタリングすることで、Hubの全てのfastaiモデルにアクセスできます。以下の画像を参照してください。 広範なコミュニティへの無料モデルホスティングと露出に加えて、Hubにはgitに基づいたバージョン管理(大容量ファイルの場合はgit-lfs)や、発見性と再現性のためのモデルカードも組み込まれています。Hubのナビゲーションについての詳細は、この紹介を参照してください。 Hugging…
ハギングフェイスフェローシッププログラムの発表
フェローシップは、さまざまなバックグラウンドを持つ優れた人々のネットワークであり、機械学習のオープンソースエコシステムに貢献しています🚀。このプログラムの目標は、主要な貢献者に力を与え、彼らの影響力をスケールさせると同時に、他の人々にも貢献を促すことです。 フェローシップの仕組み 🙌🏻 これはHugging Faceが貢献者の素晴らしい仕事をサポートしています!フェローであることは、すべての人にとって異なる方法で機能します。重要な質問は次のとおりです: ❓ 貢献者がより大きな影響を持つためには何が必要ですか? Hugging Faceは彼らが常にやりたかったプロジェクトを実現できるようにどのようにサポートできますか? あらゆるバックグラウンドのフェローを歓迎します!機械学習の進歩は草の根の貢献に依存しています。それぞれの人には、さまざまな方法でこの分野を民主化するために使用できる独自のスキルと知識があります。それぞれのフェローは異なる方法で影響を与え、それは完璧です🌈。 Hugging Faceは彼らが最も必要とする方法で創造し、共有し続けることをサポートします。 フェローシップに参加することの利点は何ですか? 🤩 利点は個々の興味に基づきます。Hugging Faceがフェローをサポートする例をいくつか紹介します: 💾 コンピューティングとリソース 🎁 マーチャンダイズと資産。 ✨ Hugging Faceからの公式な認知。 フェローになるには…
打ち上げ!最初のMLプロジェクトを始める方法 🚀
機械学習の世界に初めて入る人々は、2つの頻繁な stumbling block によく遭遇します。最初の stumbling block は、学習するための適切なライブラリを選ぶことであり、選択肢が多い場合には困難な課題です。適切なライブラリを選び、いくつかのチュートリアルを終えた後でも、次の問題は最初の大規模プロジェクトを考え出し、適切にスコープを設定して学習を最大化することです。これらの問題にぶつかったことがある場合、またはツールキットに追加する新しい ML ライブラリを探している場合は、正しい場所にいます! この記事では、Sentence Transformers (ST) を例に挙げながら、新しいライブラリを使って0から100まで進むためのいくつかのヒントを紹介します。まず、STの基本的な機能を理解し、学習に適した素晴らしいライブラリであることを強調します。次に、最初の自己主導プロジェクトに取り組むための戦術を共有します。また、最初のSTプロジェクトの構築方法と、その過程で学んだことについても話しましょう 🥳 Sentence Transformers とは何ですか? Sentence embeddings?Semantic search?Cosine similarity?!?! 😱 数週間前まで、これらの用語は私にとって混乱して頭がクラクラするほどでした。Sentence Transformers…
Twitterでの感情分析を始める
センチメント分析は、テキストデータをその極性(ポジティブ、ネガティブ、ニュートラルなど)に基づいて自動的に分類するプロセスです。企業は、ツイートのセンチメント分析を活用して、顧客が自社製品やサービスについてどのように話しているかを把握し、ビジネスの意思決定に洞察を得ること、製品の問題や潜在的なPR危機を早期に特定することができます。 このガイドでは、Twitterでのセンチメント分析を始めるために必要なすべてをカバーします。コーダーと非コーダーの両方向けに、ステップバイステップのプロセスを共有します。コーダーの場合、Inference APIを使用してツイートのセンチメント分析を簡単なコード数行でスケールして行う方法を学びます。コーディング方法を知らない場合でも心配ありません!Zapierを使用してセンチメント分析を行う方法もカバーします。Zapierはツイートを収集し、Inference APIで分析し、最終的に結果をGoogle Sheetsに送信するためのノーコードツールです⚡️ 一緒に読んで興味があるセクションにジャンプしてください🌟: センチメント分析とは何ですか? コーディングを使用したTwitterセンチメント分析の方法は? コーディングを使用せずにTwitterセンチメント分析を行う方法は? 準備ができたら、楽しんでください!🤗 センチメント分析とは何ですか? センチメント分析は、機械学習を使用して人々が特定のトピックについてどのように話しているかを自動的に識別する方法です。センチメント分析の最も一般的な用途は、テキストデータの極性(つまり、ツイートや製品レビュー、サポートチケットが何かについてポジティブ、ネガティブ、またはニュートラルに話しているかを自動的に識別すること)の検出です。 例として、@Salesforceをメンションしたいくつかのツイートをチェックして、センチメント分析モデルによってどのようにタグ付けされるかを確認してみましょう: “The more I use @salesforce the more I dislike it. It’s…
文のトランスフォーマーを使用してプレイリスト生成器を構築する
数時間前に、Sentence TransformersとGradioを使用して構築したプレイリスト生成器を公開しました。それに続いて、プロジェクトを効果的な学習体験として活用する方法について考察しました。しかし、実際にプレイリスト生成器をどのように構築したのでしょうか?この投稿では、そのプロジェクトを解説し、埋め込みの生成方法と多段階のGradioデモの構築方法について説明します。 以前のHugging Faceブログの記事でも探求したように、Sentence Transformers(ST)は文の埋め込みを生成するためのツールを提供するライブラリです。使用できる歌詞のデータセットにアクセスできたため、STの意味的検索機能を活用して与えられたテキストプロンプトからプレイリストを生成することにしました。具体的には、プロンプトから埋め込みを作成し、その埋め込みを事前生成された歌詞の埋め込みセット全体で意味的検索に使用し、関連するソングのセットを生成することでした。これはすべて、Hugging Face Spacesでホストされた新しいBlocks APIを使用したGradioアプリに包括されます。 Gradioのやや高度な使用方法について説明しますので、ライブラリに初めて取り組む方は、この投稿のGradio固有の部分に取り組む前に、Blocksの紹介を読むことをお勧めします。また、歌詞のデータセットは公開しませんが、Hugging Face Hubで歌詞の埋め込みを試すことができます。それでは、始めましょう! 🪂 Sentence Transformers:埋め込みと意味的検索 埋め込みはSentence Transformersの鍵です!以前の記事で埋め込みが何であり、どのように生成するかについて学びましたので、この投稿を続ける前にそれをチェックすることをお勧めします。 Sentence Transformersには、事前学習された埋め込みモデルの大規模なコレクションがあります!独自のトレーニングデータを使用してこれらのモデルを微調整するチュートリアルも用意されていますが、多くのユースケース(歌詞のコーパスを対象とした意味的検索など)では、事前学習されたモデルが問題なく機能します。ただし、利用可能な埋め込みモデルが非常に多いため、どれを使用するかをどのように知ることができるのでしょうか? STのドキュメントでは、多くの選択肢が強調されており、評価メトリックといくつかの使用ケースの説明も示されています。MS MARCOモデルはBing検索エンジンのクエリでトレーニングされていますが、他のドメインでも優れたパフォーマンスを発揮するため、このプロジェクトではこれらのいずれかを選択することができると判断しました。プレイリスト生成器に必要なのは、いくつかの意味的な類似性を持つ曲を見つけることであり、特定のパフォーマンス指標に達成することにはあまり興味がないため、sentence-transformers/msmarco-MiniLM-L-6-v3を任意に選びました。 STの各モデルには、設定可能な入力シーケンス長があります(最大値まで)。その後、入力は切り捨てられます。私が選んだモデルは最大シーケンス長が512ワードピースであり、これは歌を埋め込むのに十分ではないことがわかりました。幸いなことに、歌詞をモデルが解析できるように小さなチャンクに分割する簡単な方法があります。それは、詩です!歌を詩に分割し、各詩を埋め込んだ後、検索がはるかに優れた結果を示すことになります。 歌は詩に分割され、それぞれの詩は埋め込まれます。 実際に埋め込みを生成するには、Sentence Transformersモデルの.encode()メソッドを呼び出し、文字列のリストを渡すだけです。その後、埋め込みを好きな方法で保存できます。この場合は、pickle形式で保存することにしました。…
最初のデシジョン トランスフォーマーをトレーニングする
以前の投稿で、transformersライブラリでのDecision Transformersのローンチを発表しました。この新しい技術は、Transformerを意思決定モデルとして使用するというもので、ますます人気が高まっています。 今日は、ゼロからオフラインのDecision Transformerモデルをトレーニングして、ハーフチータを走らせる方法を学びます。このトレーニングは、Google Colab上で直接行います。こちらで見つけることができます👉 https://github.com/huggingface/blog/blob/main/notebooks/101_train-decision-transformers.ipynb *ジムのHalfCheetah環境でオフラインRLを使用して学習された「専門家」Decision Transformersモデルです。 ワクワクしませんか?では、始めましょう! Decision Transformersとは何ですか? Decision Transformersのトレーニング データセットの読み込みとカスタムデータコレータの構築 🤗 transformers Trainerを使用したDecision Transformerモデルのトレーニング 結論 次は何ですか? 参考文献 Decision Transformersとは何ですか? Decision…
ディフューザーの新着情報は何ですか?🎨
1か月半前に、モダリティを横断する拡散モデルのためのモジュールツールボックスを提供するdiffusersライブラリをリリースしました。数週間後には、高品質なテキストから画像への変換モデルであるStable Diffusionのサポートを追加し、誰でも無料のデモを試すことができるようにしました。最後の3週間では、チームはライブラリに1つまたは2つの新機能を追加することを決定しました。このブログ投稿では、diffusersバージョン0.3の新機能について概説します!GitHubリポジトリに⭐を付けるのを忘れないでください。 画像から画像へのパイプライン テキストの逆転 インペインティング より小さなGPUに最適化 Mac上で実行 ONNXエクスポーター 新しいドキュメント コミュニティ SD潜在空間での動画生成 モデルの説明可能性 日本語のStable Diffusion 高品質なファインチューニングモデル Stable Diffusionによるクロスアテンション制御 再利用可能なシード 画像から画像へのパイプライン 最も要望の多かった機能の1つは、画像から画像の生成を行うことです。このパイプラインでは、画像とプロンプトを入力すると、それに基づいて画像が生成されます! 公式のColabノートブックに基づいたコードを見てみましょう。 from diffusers import…
倫理と社会のニュースレター#1
Hello, world! オープンソース企業として創業したHugging Faceは、技術におけるいくつかの重要な倫理的価値、すなわち協力、責任、透明性に基づいて設立されました。オープンな環境でコードを記述することは、自分のコードとその選択肢が世界に公開され、他の人が批判や追加を行うために利用可能であることを意味します。Hugging Face Hubをホストとしてモデルやデータを提供するようになると、リサーチコミュニティは再現性を直接統合し、それを会社の基本的な価値としました。そして、Hugging Faceに存在するデータセットやモデルの数が増えるにつれ、Hugging Faceのメンバーは、リサーチコミュニティによって定義された新たな価値に対応するために、ドキュメントの要件や無料の指導コースを導入しました。これにより、技術の進歩につながる数学、コード、プロセス、人々の理解を含む、監査可能性の価値が追加されました。 AIにおける倫理をどのように実施するかは、オープンな研究領域です。応用倫理と人工知能に関する学問や理論は数十年前から存在していましたが、AI開発における倫理の実践とテストされた手法は、過去10年間にわずかに現れ始めたに過ぎません。これは、AIシステムの構築ブロックである機械学習モデルが、それらの進歩を測定するために使用されてきた基準を超えたため、機械学習システムが日常生活に影響を与える実用的なアプリケーションの範囲で広範に採用されたためです。倫理に基づくAIの進歩に興味を持つ私たちのうちの何人かは、倫理的な原則に基づいて設立された機械学習企業に参加することは、成長が始まり、世界中の人々が倫理的なAIの問題に取り組み始めるときに、将来のAIがどのようになるかを根本的に形作る機会です。これは、倫理を念頭に置いて最初から設立されたテクノロジー企業がどのように見えるのかという、新しい形の現代のAIの実験です。機械学習に倫理の視点を当てるとは、良い機械学習を民主化するとはどういうことでしょうか。 このため、私たちは新しいHugging Face Ethics and Societyニュースレターで最近の考え方と取り組みを共有しています。このニュースレターは、春分点と夏至点に毎シーズン発行されます。これは、私たちHugging Faceの「倫理と社会の専門家」というオープンなグループが一緒になって機械学習の広範な社会的文脈やHugging Faceの役割に取り組むために作成されました。私たちは、会社全体が価値に基づいた意思決定を行うためには、専門チームではなく、共有の責任とコミットメントが必要であると考えています。私たちの仕事の倫理的なリスクを認識し、学ぶために、すべての関係者が責任を共有することが重要です。 私たちは、現在のところ「良い」機械学習の意味について継続的に研究しており、それを定義するための基準を提供しようとしています。これは進行中のプロセスであり、現在の日常生活に影響を与える機械学習コミュニティの異なる価値観と調和する点に到達するために、現在の日常生活で可能な限り何ができるかを見据えています。私たちは、Hugging Faceの創業の原則に基づいてこのアプローチを展開しています。 私たちはオープンソースコミュニティと協力することを目指しています。これには、ドキュメンテーションと評価のための現代化されたツール、コミュニティディスカッション、Discord、さらには異なる価値観に基づいて自分の作業を共有するための貢献者への個別サポートが含まれます。 私たちは、自分たちの考え方やプロセスを透明にすることを目指しています。プロジェクトの開始時に特定のプロジェクト価値についての執筆を共有し、AIポリシーについての考え方も共有しています。また、この作業に対するコミュニティからのフィードバックも学ぶためのリソースとして得ています。 私たちは、現在と将来の影響に対する責任を負いながら、これらのツールとアーティファクトの作成を基盤としています。この優先順位付けにより、機械学習システムをより監査可能で理解可能にするプロジェクト設計が実現しました。これには、ML以外の専門知識を持つ人々にも適した教育プロジェクトやコーディング不要のMLデータ分析ツールなどが含まれます。 これらの基本から出発し、私たちは、プロジェクトごとの特定の文脈と予測される影響に重点を置いた価値観の実施方法を取っています。したがって、ここではグローバルな価値観や原則の一覧を提供することはありません。その代わり、このニュースレターなど、プロジェクトごとの考え方を引き続き共有し、理解が進むにつれてさらに共有する予定です。異なる価値観と影響を受ける人々を特定するために、コミュニティのディスカッションが重要であると考えているため、Hugging Face Hubにオンラインで接続できる人は誰でも直接モデル、データ、およびスペースに関するフィードバックを提供できる機会を最近提供しました。オープンなディスカッションのツールと並行して、包括的なコミュニティスペースのための行動規範とコンテンツガイドラインを作成しました。セキュアなML開発のためのプライベートHub、モデルを厳密に評価するための評価ライブラリ、スキューとバイアスを分析するためのデータ解析のためのコード、モデルのトレーニング時の炭素排出量を追跡するためのツールを開発しています。また、倫理的および法的な問題について報告するためにモデルとスペースのリポジトリを「フラグ」とすることも可能にしました。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.