Learn more about Search Results CLIP - Page 12
- You may be interested
- 「NVIDIAがインドの巨大企業と提携し、世...
- AIによるなりすましからの戦い
- NLPの探求 – NLPのキックスタート(...
- UCバークレーの研究者たちは、LLMCompiler...
- 「新しいAIの研究が、化学的な匂いを説明...
- 「カンチレバー対ChatGPT」 カンチレバー...
- 「AIモデルは強力ですが、生物学的に妥当...
- VoAGIニュース、8月9日:ChatGPTを忘れて...
- 「AIアラインメントの二つの側面」
- 医療現場におけるAIの潜在能力の開放 (Iry...
- 「AIと大学フットボールの未来」
- 「模倣モデルとオープンソースLLM革命」
- 「エヴァ・マリー・ミュラー=シュトゥー...
- メタAIは、122の言語に対応した初の並列読...
- 商務省は、「米国人工知能安全研究所」を...
RAGのNLPにおける検索と生成の統一的な革新的アプローチ
イントロダクション AIの急速に進化する領域に、ゲームチェンジングなイノベーションが登場し、機械が人間の言語と関わる方法を再構築しています。それが、Retrieval Augmented Generation(RAG)です。RAGは単なるテックの流行語ではありません。それは人機コミュニケーションを革命化しています。我々と一緒にRAGの秘密を解き明かし、その応用とAIへの深い影響を探求しましょう。RAGはNLPの最前線に位置し、リトリーバルとジェネレーションをシームレスに統合することで、機械が人間の言語を把握し、相互作用する能力を向上させています。 学習目標 リトリーバルベースとジェネレーションベースのモデルの基礎的な概念を理解する(NLP)、それによる応用、違い、類似点。 NLPにおける純粋なリトリーバルまたはジェネレーションモデルの制限を分析し、実世界の例を探求する。 リトリーバルとジェネレーションモデルの統合の重要性を認識し、この統合が必要なシナリオを理解する。 リトリーバル拡張生成(RAG)アーキテクチャに深く入り込み、その構成要素を理解する。 RAGの実装における実践的なスキルを開発し、埋め込みの生成や透明性と正確性の側面を理解する。 この記事はData Science Blogathonの一部として掲載されました。 リトリーバルとジェネレーションの理解 リトリーバルベースとジェネレーションベースのモデルとその主な違いと類似点、自然言語処理におけるアプローチについて探求しましょう。 リトリーバルベースのNLPモデル NLPのリトリーバルベースモデルは、入力クエリに基づいて事前に定義された応答セットから適切な応答を選択するように設計されています。これらのモデルは、入力テキスト(質問またはクエリ)を事前に定義された応答のデータベースと比較します。システムは、入力と保存された応答との類似度をコサイン類似度や他の意味的マッチング手法を使用して測定し、最適な応答を特定します。リトリーバルベースモデルは、質問応答などのタスクに効率的であり、応答がしばしば事実ベースで整理された形式で利用可能な場合に適しています。 ジェネレーションベースのNLPモデル 一方、ジェネレーションベースのモデルは、ゼロから応答を作成します。これらのモデルは、しばしばニューラルネットワークに基づく複雑なアルゴリズムを使用して、人のようなテキストを生成します。リトリーバルベースモデルとは異なり、ジェネレーションベースモデルは事前に定義された応答に依存しません。代わりに、入力に提供された文脈に基づいて次の単語や単語のシーケンスを予測することで、応答の生成を学習します。この新しい、文脈に即した応答を生成する能力により、ジェネレーションベースモデルは非常に多目的であり、クリエイティブなライティング、機械翻訳、対話システムなど、多様で文脈豊かな応答が必要なタスクに適しています。 主な違いと類似点 要約すると、リトリーバルベースモデルは、事前に定義された応答が利用可能であり、速度が重要なタスクで優れています。一方、ジェネレーションベースモデルは、創造性、文脈認識、多様でオリジナルなコンテンツの生成が必要なタスクで輝きます。RAGなどのモデルでこれらのアプローチを組み合わせることは、両方の手法の長所を活用してNLPシステムの総合的なパフォーマンスを向上させるバランスの取れた解決策を提供します。 純粋なリトリーバルまたはジェネレーションモデルの制限 人間と機械の会話がますます洗練される中で、人工知能のダイナミックな世界では、リトリーバルベースとジェネレーションベースの2つの主要なモデルが主役となっています。これらのモデルにはそれぞれ長所がありますが、制限もあります。 限定された文脈理解…
私たちはハイパーリアルな人物画像を生成できるのか? このAI論文は、HyperHumanと呼ばれるテキストから画像へのモデルでの飛躍を提案しています
量子コンピューティングは、特に古典的なコンピュータが制約に直面する場合に問題解決を革新する可能性が高く評価されています。議論の大部分が漸近的スケーリングでの理論的な利点に関わってきましたが、有限のサイズの問題において量子コンピュータの実用的な応用を特定することが重要です。具体的な例は、古典的な対応物よりも効率的に問題を解決できるかどうか、およびこれらのタスクに量子アルゴリズムをどのように適用できるかを示します。近年、共同研究の取り組みによって、量子コンピューティングの実世界応用が探求され、この新興技術が恩恵を受けることができる特定の問題領域についての洞察が得られています。 拡散ベースのテキストから画像(T2I)モデルは、スケーラビリティとトレーニングの安定性の面で優れた選択肢となっています。ただし、Stable Diffusionなどのモデルは、高精度な人間の画像を生成するための支援が必要です。制御可能なヒューマン生成に対する従来のアプローチには制約があります。研究者たちは、外見と潜在的な構造の相関を捉えることでこれらの課題を克服するHyperHumanフレームワークを提案しました。大規模なヒューマンセントリックなデータセット、Latent Structural Diffusion Model、およびStructure-Guided Refinerが組み込まれ、ハイパーリアルな人間画像生成の最先端性能を実現しています。 テキストやポーズなどのユーザーの条件からハイパーリアルな人間の画像を生成することは、画像アニメーションやバーチャル試着などのアプリケーションにとって重要です。VAEやGANを使用した早期の手法は、トレーニングの安定性とキャパシティの制約に直面しました。拡散モデルは生成型AIを革新しましたが、既存のT2Iモデルは人間の解剖学と自然なポーズにおいて連続性に苦しんでいました。HyperHumanは、外見と構造の相関を捉えるフレームワークを導入し、ハイパーリアリズムと人間画像生成の多様性を保証し、これらの課題に対応しています。 HyperHumanは、ハイパーリアルな人間の画像を生成するためのフレームワークです。340Mの注釈付き画像を備えたHumanVerseという大規模なヒューマンセントリックなデータセットが含まれています。HyperHumanには、RGB画像を生成する際に深度と表面法線をノイズ除去するLatent Structural Diffusion Modelが組み込まれています。Structure-Guided Refinerは、生成された画像の品質と詳細を向上させます。彼らのフレームワークは、さまざまなシナリオでハイパーリアルな人間の画像を生成します。 彼らの研究では、FID、KID、およびFID CLIPを含むさまざまなメトリックを使用してHyperHumanフレームワークを評価し、画像の品質と多様性のためのCLIP類似性、テキスト-画像の整列のためのCLIP類似性、およびポーズの精度メトリックを評価しました。HyperHumanは画像の品質とポーズの精度で優れており、小さなモデルを使用してもCLIPスコアで2位にランクインしています。彼らのフレームワークは、画像の品質、テキストの整合性、一般的に使用されるCFGスケールのバランスの取れたパフォーマンスを実証しています。 結論として、HyperHumanフレームワークは、連続性と自然さの課題を克服するハイパーリアルな人間の画像生成への新しいアプローチを提案しています。HumanVerseデータセットとLatent Structural Diffusion Modelを活用することで、高品質で多様性に富んだ画像が開発され、テキストと整列した画像が生成されます。フレームワークのStructure-Guided Refinerは視覚品質と解像度を向上させます。従来のモデルと比較して、優れたパフォーマンスと堅牢性を備えたハイパーリアルな人間画像生成を実現しています。将来の研究では、テキストからポーズを生成するためにLLMなどの深い事前分布の使用を探究することができます。これにより、ボディスケルトンの入力を不要にすることができます。
「中国が新しい生成AIの安全性を判断する計画を策定し、詳細に詰まっています」
新しい提案は、企業がAIセキュリティを評価し、AIモデルでの検閲を強制するための非常に具体的な方法を明示しています
トップ40+の生成AIツール(2023年10月)
ChatGPT – GPT-4 GPT-4はOpenAIの最新のLLMであり、これまでの前任者よりも革新的かつ正確で安全です。 また、画像、PDF、CSVなども処理することができる多モードの機能も備えています。 Code Interpreterの導入により、GPT-4は自分自身のコードを実行して幻覚を避け、正確な回答を提供することができます。 Bing AI Bing AIはOpenAIのGPT-4モデルによって駆動されており、正確な回答を提供するためにウェブを横断する能力を持っています。 また、ユーザーのプロンプトから画像を生成する能力も備えています。 GitHub Copilot GitHub Copilotは、コードを分析し、即時のフィードバックと関連するコードの提案を提供するAIコード補完ツールです。 DALL-E 2 DALL-E 2はOpenAIによって開発されたテキストから画像を生成するツールであり、ユーザーのプロンプトに基づいてオリジナルの画像を作成します。 不適切なユーザーリクエストを拒否するよう設計されています。 Cohere Generate Cohere…
即座のハッキングとLLMの誤用
「大規模言語モデルの世界に飛び込んで、プロンプトの可能性と課題、ハッキングへの影響力、そして誤用防止のために重要なセキュリティプロトコルを探求してみましょう」
シンガポール国立大学の研究者たちは、ピクセルベースと潜在ベースのVDMを結びつけたハイブリッド人工知能モデルであるShow-1を提案しますこれはテキストからビデオを生成するものです
シンガポール国立大学の研究者たちは、Show-1というハイブリッドモデルを導入しました。テキストからビデオを生成するためのピクセルベースと潜在ベースのビデオ拡散モデル(VDM)の強みを組み合わせています。ピクセルベースのVDMは計算コストが高く、潜在ベースのVDMは正確なテキストとビデオの整合性に苦しんでいますが、Show-1は新しいソリューションを提供します。まず、ピクセルベースのVDMを使用して、強いテキストとビデオの関連性を持つ低解像度のビデオを作成し、その後、潜在ベースのVDMを使用してこれらのビデオを高解像度にアップサンプリングします。その結果、標準的なビデオ生成のベンチマークで検証された正確な整列がされた、高品質で効率的に生成されるビデオが得られます。 彼らの研究はテキストの説明から写実的なビデオを生成する革新的なアプローチを示しています。初期のビデオ作成にはピクセルベースのVDMを活用し、正確な整列と運動表現を保証し、効率的なスーパーレゾリューションには潜在ベースのVDMを利用しています。Show-1はMSR-VTTデータセットで最先端のパフォーマンスを実現し、有望なソリューションです。 彼らの手法は、テキストの説明から非常に現実的なビデオを生成する方法を提案しています。ピクセルベースのVDMを活用して正確な初期ビデオ作成を行い、効率的なスーパーレゾリューションには潜在ベースのVDMを使用します。この手法であるShow-1は、正確なテキストとビデオの整列、運動表現、費用対効果に優れています。 彼らの手法はピクセルベースと潜在ベースのVDMを組み合わせてテキストからビデオを生成します。ピクセルベースのVDMは正確なテキストとビデオの整列と運動表現を保証し、潜在ベースのVDMは効率的なスーパーレゾリューションを実行します。トレーニングにはキーフレームモデル、補間モデル、初期スーパーレゾリューションモデル、およびテキストからビデオ(t2v)モデルが含まれます。キーフレームモデルのトレーニングには3日かかり、補間モデルと初期スーパーレゾリューションモデルはそれぞれ1日かかります。t2vモデルはWebVid-10Mデータセットを使用して3日間の専門的な適応トレーニングが行われます。 研究者はUCF-101データセットとMSR-VTTデータセットで提案手法を評価しました。UCF-101では、ISメトリックによる他の手法との比較で、Show-1は強力なゼロショット能力を示しています。MSR-VTTデータセットでは、FID-vid、FVD、CLIPSIMスコアにおいて最先端のモデルを凌駕し、優れた視覚的な一致性と意味的な結束性を示しています。これらの結果は、Show-1が高度に忠実で写実的なビデオを生成する能力を確認し、光学的な品質とコンテンツの一致性に優れていることを示しています。 ピクセルベースと潜在ベースのVDMを結合したShow-1は、テキストからビデオの生成において優れた性能を発揮します。この手法は正確なテキストとビデオの整列、運動表現、効率的なスーパーレゾリューションを保証し、計算の効率性を高めます。UCF-101データセットとMSR-VTTデータセットでの評価は、他の手法を凌駕するかそれに迫る優れたビジュアル品質と意味的な一致性を確認しています。 今後の研究では、テキストからビデオの生成においてピクセルベースと潜在ベースのVDMを組み合わせること、効率を最適化し、整列を改善するための別の手法を探求する必要があります。高度な整列と運動表現のための代替手法の探索や、様々なデータセットの評価も検討するべきです。転移学習と適応性の調査も重要です。時間的な結束性を高め、現実的な出力と品質評価のためのユーザースタディを強化することは不可欠であり、テキストからビデオの進歩を促進します。
AIにおける継続的学習の現状について
なぜchatGPTは2021年までの訓練しかされていないのですか?この記事では、深層学習における継続的な学習の現状を解説し、特に大規模な言語モデルとチャットボットに焦点を当てています
「NVIDIAは創造的AIの台頭に対応するため、ロボティクスプラットフォームを拡大する」
強力な生成型AIモデルとクラウドネイティブのAPIおよびマイクロサービスがエッジに導入されています。 生成型AIは、トランスフォーマーモデルと大規模な言語モデルの力をほぼすべての業界にもたらしています。その範囲は、エッジ、ロボット、物流システムなどの領域にも及んでおり、欠陥検出、リアルタイム資産追跡、自律計画とナビゲーション、人間とロボットの相互作用などに活用されています。 NVIDIAは本日、エッジAIとロボティクスのためのNVIDIA Jetsonプラットフォーム上の2つのフレームワークを大幅に拡張しました。NVIDIA Isaac ROSロボティクスフレームワークが一般提供開始され、次にJetson上でのNVIDIA Metropolisの拡張が控えています。 AIアプリケーションの開発と展開をエッジで加速するために、NVIDIAは最新のオープンソース生成型AIモデルを利用するためのJetson生成型AIラボを開設しました。 Amazon Web Services、Cisco、John Deere、Medtronic、Pepsico、Siemensなど、120万人以上の開発者と1万以上の顧客がNVIDIA AIとJetsonプラットフォームを選んでいます。 急速に進化するAIの世界では、ますます複雑なシナリオに対応するため、開発者はエッジ向けのAIアプリケーションを構築するために長い開発サイクルに直面しています。環境、製造ライン、お客様の自動化ニーズの変化に対応するために、ロボットとAIシステムを素早く再プログラムすることは時間がかかり、専門的なスキルが必要です。 生成型AIは、トレーニング中に明示的に見たことのないものを特定するモデルのゼロショット学習を提供し、自然言語インターフェースによってエッジでのAIの開発、展開、管理を簡素化します。 AIの景色を変える 生成型AIは、ヒトの言語プロンプトを理解してモデルの変更を行うことで使いやすさを大幅に向上させます。これらのAIモデルは、検出、セグメンテーション、トラッキング、検索、さらには再プログラムなどにおいて、従来の畳み込みニューラルネットワークに基づくモデルを上回る柔軟性を持っています。 ABI Researchによると、生成型AIは2033年までに世界の製造業の収益に105億ドルを追加すると予測されています。 「生成型AIは、従来の方法では実現不可能であったよりも優れた汎化能力、使いやすさ、高い精度により、エッジでのAIの展開を大幅に加速させます」とNVIDIAのエンベデッド・エッジコンピューティング担当バイスプレジデントのDeepu Talla氏は述べています。「これはJetson上でMetropolisとIsaacのフレームワークの最大拡張ですが、トランスフォーマーモデルと生成型AIの力を組み合わせることで、このニーズに対応しています。」 エッジでの生成型AI開発 Jetson生成型AIラボでは、最適化されたツールとチュートリアルにアクセスして、オープンソースのLLMs、ディフュージョンモデルを展開するための支援を開発者に提供しています。それには、インタラクティブな見事な画像を生成するためのビジョン言語モデル(VLM)やビジョントランスフォーマー(ViTs)も含まれ、ビジョンAIと自然言語処理を組み合わせてシーンの包括的な理解が可能です。 開発者は、ViTやビジョン基盤モデルなどの基礎的なモデルのカスタマイズや微調整を行い、非常に少量のデータで高精度なビジョンAIモデルを作成することができる、NVIDIA…
「大型言語モデル(LLM)のマスターに至る7つのステップ」
大型言語モデル(LLM)は、自然言語処理の新時代を開拓しましたでは、それについてもっと学びましょうこのガイドを使用して、大型言語モデルの基礎から始めて、7つの簡単なステップでLLMアプリを構築して展開する方法を学びましょう
AudioSep 記述するすべてを分離する
Note I have retained the acronym CASA as it is commonly known in the field. However, if you'd like a translation for Computational Auditory…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.