Learn more about Search Results AMPL - Page 12
- You may be interested
- 「Meta AIは、社会的な具現化されたAIエー...
- 「Pythonによる3D地理空間データ統合:究...
- I/O 2023 で発表した100のこと
- 「ワードエンベディング:より良い回答の...
- 「DPOを使用してLlama 2を微調整する」
- ベスト5のRコース(2024年)
- アルゴリズムのバイアスの理解:タイプ、...
- 3Dインスタンスセグメンテーションにおけ...
- このAI研究は、高品質なビデオ生成のため...
- 「ロボットが外科医よりも正確に眼球の裏...
- 「最高のデジタルコンテンツ戦略(アレッ...
- 画像拡張のための生成的対立ネットワーク...
- 初心者向けチュートリアル:Microsoft Azu...
- 「このAI研究は微生物学者が細菌を識別す...
- 「ソフトロボットは自分自身を繰り返し膨...
アプリケーションの近代化における生成AIの活用
「生成AIは、極度の自動化の時代において、アプリケーションの近代化プログラムを加速させるための強力なエンエーブラーとなっています」
「異常検知への推測を排除する:ヒストグラムが閾値を設定します」
『異常検知の領域において、隠れた異常を追求することは、データの広大な風景の中で隠された宝物を探し求めることに似ていますしかし、最も高度な異常検知アルゴリズムを使用していても...』
Amazon Personalize Next Best Actionを使用して、ユーザーにアクションを推奨することでブランドの忠誠心を構築します
Amazon Personalizeは、個別のユーザーに提案する最適なアクションを決定し、ブランドのロイヤルティとコンバージョンを向上させるための新しいNext Best Action (aws-next-best-action)のレシピを発表できることを喜んでお知らせしますAmazon Personalizeは、開発者が高度な機械学習(ML)サービスを提供することを容易にする完全に管理されたサービスです
「Amazon Personalizeと創造的AIを活用して、ハイパーカスタマイズされたお客様体験を実現しましょう」
今日は、Amazon Personalizeと生成AIを使用して個別の顧客体験を向上させるための3つの新製品を発表することをお知らせいたします管理されたソリューションを探している場合、または独自のものを構築したい場合でも、これらの新しい機能を使用して、旅を推進することができますAmazon Personalizeは、完全に管理された機械学習(ML)サービスで、...
「HuggingFaceへの入り口」
「HuggingFaceは、学習を始めるためのスタート地点が分からないと、複雑で難解になることがありますHuggingFaceリポジトリへの入り口の一つは、run_mlm.pyとrun_clm.pyスクリプトですこの記事では、私たちはさらに進んでいきます...」
「包括的な時系列探索的分析」
「ここにはタイムスタンプでインデックスされたデータセットがありますデータはストレージの需要と供給に関するものかもしれませんが、あなたは戦略的な製品の適切な補充間隔を予測することが求められています...」
「SnapLogicがAmazon Bedrockを使用してテキストからパイプラインアプリケーションを構築し、ビジネスの意図を行動に変換します」
この投稿は、SnapLogicのChief ScientistであるGreg Benson、Sr. Product ManagerであるAaron Kesler、Enterprise Solutions ArchitectであるRich Dillと共同で執筆されました多くのお客様がAmazon BedrockとAmazon CodeWhisperer上で生成型AIアプリを構築し、自然言語に基づくコードアーティファクトを作成していますこのユースケースでは、大規模な言語モデル(LLM)がどのようにして[…]を行っているかを強調しています
アイドルアプリの自動シャットダウンを使用して、Amazon SageMaker Canvasのコストを最適化する
『Amazon SageMaker Canvas』は、豊富なノーコードの機械学習(ML)と生成型AIのワークスペースで、視覚的かつノーコードのインターフェースを通じて、世界中のお客様が既存および新たな課題を解決するためにML技術をより簡単に採用できるようにしましたこれは、MLワークフローを終端までカバーしており、強力なデータの検索が必要な場合でも、[…]
「アマゾンベッドロックを使った商品説明の自動生成」
今日の常に進化するeコマースの世界では、魅力的な製品の説明の影響は過小評価できませんそれは潜在的な訪問者を支払いをする顧客に変えるか、競合他社のサイトにクリックして離れてしまう決定的要因になるかもしれません膨大な数の製品にわたる説明の手動作成は、労働集約的なものです...
「CNN(畳み込みニューラルネットワーク)におけるポイントワイズ畳み込みの探求:全結合層の置き換え」
はじめに 畳み込みニューラルネットワーク(CNN)は、画像とパターンを理解する上で重要な役割を果たし、深層学習の世界を変えました。この旅は、YanがLeNetアーキテクチャを紹介したころから始まり、今日ではさまざまなCNNを選択できます。従来、これらのネットワークは、特に異なるカテゴリに分類する場合には、全結合層に依存していました。しかし、そこに変化の風が吹いています。私たちは異なるアーキテクチャを探求しており、畳み込みニューラルネットワークにおける新しい方法であるPointwise Convolutionを使用しています。まるで新しい道を進むような感覚です。このアプローチは、通常の全結合層の使用方法に挑戦し、ネットワークをよりスマートで高速にするいくつかのクールな利点をもたらします。私たちと一緒にこの探求に参加し、Pointwise Convolutionの理解に深入りし、ネットワークの効率的な動作と優れたパフォーマンスの向上がいかに役立つかを発見しましょう。 学習目標 LeNetなどの初期モデルから現在使用されている多様なアーキテクチャまで、畳み込みニューラルネットワーク(CNN)の歴史を理解する CNNにおける従来の全結合層に関連する計算の重さと空間情報の損失について探求する Pointwise Convolutionの効率的な特徴抽出方法を探求する ネットワークの変更やハイパーパラメータのチューニングなど、CNNにおけるPointwise Convolutionの実装に必要な実践的なスキルを開発する この記事はデータサイエンスブログマラソンの一環として公開されました。 全結合層の理解 従来の畳み込みニューラルネットワーク(CNN)では、全結合層は重要な役割を果たし、ある層のすべてのニューロンを次の層のすべてのニューロンに接続する密な相互接続構造を形成しています。これらの層は、画像分類などのタスクで使用され、ネットワークが特定の特徴と特定のクラスを関連付けることを学習します。 要点 グローバルコネクティビティ:全結合層はグローバルな接続を作成し、ある層の各ニューロンが次の層のすべてのニューロンに接続されることを可能にします。 パラメータの重さ:全結合層には非常に多くのパラメータが含まれるため、モデルのパラメータ数が大幅に増加することがあります。 空間情報の損失:全結合層に入力データを平坦化することで、元の画像から空間情報が失われる場合があり、特定のアプリケーションで欠点となる可能性があります。 計算の重さ:全結合層に関連する計算負荷は、ネットワークの規模が拡大するにつれて特に大きくなる場合があります。 実践における使用法 畳み込み層の後:全結合層は通常、畳み込み層の後に使用されます。畳み込み層は入力データから特徴を抽出します。 密な層:一部の場合、全結合層は「密な」層と呼ばれ、すべてのニューロンを接続する役割が強調されます。 変更の必要性とは? 通常の畳み込みニューラルネットワーク(CNN)における全結合層の基本的な理解ができたので、なぜ一部の人々が異なるものを探しているのかについて話しましょう。全結合層は役割を果たしていますが、いくつかの課題を抱えています。コンピューターに負荷がかかり、多くのパラメータを使用し、時には画像から重要な詳細を失うことがあります。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.