Learn more about Search Results 22 - Page 12
- You may be interested
- 「FACTOOLにご紹介いたします:大規模言語...
- 「米国の半導体産業の発展」
- 未来は今です:MedTechにおけるAIの6つの応用
- 2023年9月のトップAIメールアシスタント
- 3つの質問:大規模言語モデルについて、Ja...
- 「リコメンデーションシステムにおける2つ...
- 「時系列の外れ値を解読する:1/4」
- BScの後に何をすべきか?トップ10のキャリ...
- 「RustコードのSIMD高速化のための9つのル...
- ゲーム開発のためのAI:5日間で農業ゲーム...
- 「Amazon EC2 Inf1&Inf2インスタンス上の...
- AIテキストをソーシャルメディアで最大限...
- Imagen EditorとEditBench:テキストによ...
- 「AI言語モデルにおける迅速なエンジニア...
- 「AIの使用を支持する俳優たちと、支持し...
「なぜ機械は思考できるのか」というテーマに関して
17世紀に、レネ・デカルトは比較的新しい考えを紹介しましたーCogito ergo sum(「私は考える、ゆえに私は存在する」)この簡単な形式は、西洋哲学の基礎となりました
「エンティティ抽出、SQLクエリ、およびAmazon Bedrockを使用したRAGベースのインテリジェントドキュメントアシスタントの強化」
会話AIは、最近の生成AIの急速な発展により、特に指示微調整や人間のフィードバックからの強化学習といったトレーニング技術によって導入された大規模言語モデル(LLM)のパフォーマンス改善により、大きな進歩を遂げてきました正しくプロンプトされると、これらのモデルは特定のタスクのトレーニングデータなしで、一貫した会話を行うことができます[…]
言語モデルを使用したドキュメントの自動要約のテクニック
要約は、大量の情報をコンパクトで意味のある形式に短縮する技術であり、情報豊かな時代における効果的なコミュニケーションの基盤となっていますデータの溢れる世界で、長いテキストを短い要約にまとめることで時間を節約し、的確な意思決定を支援します要約は内容を短縮して提示することにより、時間を節約し、明確さを向上させる役割を果たします
2024年の予測17:RAG to RichesからBeatlemaniaとNational Treasuresへ
メリアム・ウェブスターの前に譲れ:今年、企業は年間のワードに追加するための多くの候補を見つけました。「生成的AI」と「生成的事前学習変換器」の後には、「大規模言語モデル」と「検索増強生成」(RAG)のような用語が続き、さまざまな産業が変革的な新技術に注目しました。 生成的AIは今年の初めにはまだ注目されていなかったが、終わりには大きなインパクトを与えました。多くの企業が、テキスト、音声、動画を取り込み、生産性、イノベーション、創造性を革新する新しいコンテンツを生み出す能力を利用するために全力で取り組んでいます。 企業はこのトレンドに乗っています。OpenAIのChatGPTなどのディープラーニングアルゴリズムは、企業のデータをさらにトレーニングすることで、63のビジネスユースケース全体で年間2.6兆ドルから4.4兆ドル相当の価値を生み出すことができると、マッキンゼー・アンド・カンパニーによって評価されています。 しかし、大量の内部データを管理することは、AIの拡大における最大の障害とされてきました。NVIDIAのAIの専門家の一部は、2024年は友達との電話に関するすべてだと予測しており、クラウドサービスプロバイダーやデータストレージおよび分析会社など、大規模データを効率的に処理し、調整し、展開するノウハウを持つ企業や個人とのパートナーシップや協力関係を構築することが重要だと述べています。 大規模言語モデルがその中心にあります。NVIDIAの専門家によると、LLM研究の進展は、ますますビジネスや企業向けのアプリケーションに適用されるようになります。RAG、自律型インテリジェントエージェント、マルチモーダルインタラクションのようなAIの機能は、ほぼすべてのプラットフォームを介してよりアクセス可能で容易に展開できるようになります。 NVIDIAの専門家の予想を聞いてください: MANUVIR DASエンタープライズコンピューティング部門副社長 一揃いは全てに合わない:カスタマイズが企業にやってきます。企業は1つまたは2つの生成的AIアプリケーションを持つのではなく、さまざまな部門に適した独自のデータを使用した何百ものカスタマイズされたアプリケーションを持つことになるでしょう。 これらのカスタムLLMは、稼働中にデータソースを生成的AIモデルに接続するためのRAGの機能を備え、より正確で明確な応答を提供します。Amdocs、Dropbox、Genentech、SAP、ServiceNow、Snowflakeなどのリーディングカンパニーは、既にRAGとLLMを使用した新しい生成的AIサービスを構築しています。 オープンソースソフトウェアが先頭を走っています:オープンソースの事前学習モデルのおかげで、特定のドメインの課題を解決する生成的AIアプリケーションがビジネスの運用戦略の一部になるでしょう。 企業がこれらの先行モデルをプライベートまたはリアルタイムのデータと組み合わせると、組織全体で加速された生産性とコストの利益を見ることができるようになります。クラウドベースのコンピューティングやAIモデルファウンドリーサービスから、データセンターやエッジ、デスクトップまで、ほぼすべてのプラットフォームでAIコンピューティングとソフトウェアがよりアクセス可能になります。 棚卸しのAIとマイクロサービス:生成的AIは、開発者が複雑なアプリケーションを構築しやすくするアプリケーションプログラミングインターフェース(API)エンドポイントの採用を促しています。 2024年には、ソフトウェア開発キットとAPIが進化し、開発者がRAGなどのAIマイクロサービスを利用してオフシェルフのAIモデルをカスタマイズすることができるようになります。これにより、企業は最新のビジネス情報にアクセスできる知能を持つアシスタントや要約ツールを使用して、AIによる生産性の完全な可能性を引き出すことができます。 開発者は、これらのAPIエンドポイントをアプリケーションに直接埋め込むことができ、モデルとフレームワークをサポートするために必要なインフラストラクチャの維持について心配する必要はありません。エンドユーザーは、自分のニーズに適応するより直感的でレスポンシブなアプリケーションを体験することができます。 IAN BUCKハイパースケールとHPC部門副社長 国家的な財産:人工知能は新しい宇宙競争となり、すべての国が研究と科学の重要な進展を推進し、GDPを向上させるために自国の卓越の中心を作ろうとしています。 数百個のアクセラレートされた計算ノードを使用するだけで、国は高効率で大規模なパフォーマンスを発揮するエクサスケールAIスーパーコンピュータを迅速に構築することができます。政府資金による創発型AI卓越センターは、新しい雇用を創出し、次世代の科学者、研究者、エンジニアを育成するためにより強力な大学のプログラムを構築することで、国の経済成長を後押しします。 飛躍的な進歩:企業リーダーは、二つの主要な要因に基づいて量子コンピューティングの研究イニシアチブを立ち上げます。まず、従来のAIスーパーコンピュータを使用して量子プロセッサをシミュレートする能力、そして、ハイブリッドクラシカル量子コンピューティングのためのオープンかつ統一された開発プラットフォームの利用が可能になることです。これにより、開発者は、量子アルゴリズムを構築するためにカスタムで特殊な知識を必要とせず、標準のプログラミング言語を使用することができます。 かつてはコンピュータ科学の奇妙なニッチと考えられていた量子コンピューティングの探求は、素材科学、製薬研究、サブアトミック物理学、物流などの分野で急速な進歩を追求する企業がアカデミアや国立研究所に加わることで、より一般的なものになるでしょう。 KARI BRISKIAIソフトウェア担当副社長 RAGから富へ:2024年、企業がこれらのAIフレームワークを採用するにつれ、再試行補完生成はさらに注目されるでしょう。…
「松ぼっくりベクトルデータベースとAmazon SageMaker JumpStartのLlama-2を使用したリトリーバル増強生成によって幻覚を軽減する」
産業全体でのLLMの採用は止まることのないように見えますが、それらは新しいAIの波を支えるより広範な技術エコシステムの一部です多くの対話AIのユースケースでは、Llama 2、Flan T5、BloomのようなLLMがユーザーのクエリに応答するために必要ですこれらのモデルは質問に答えるためにパラメトリックな知識に依存しています モデルは[…]
SetFitABSA SetFitを使用したFew-Shotアスペクトベースの感情分析
SetFitABSAは、テキスト内の特定の側面に対する感情を検出する効率的な技術です。 Aspect-Based Sentiment Analysis (ABSA)は、テキスト内の特定の側面に対する感情を検出するタスクです。例えば、「この電話は画面が素晴らしいですが、バッテリーは小さすぎます」という文では、側面の用語は「画面」と「バッテリー」であり、それぞれに対する感情極性はPositiveとNegativeです。 ABSAは、さまざまなドメインの製品やサービスの顧客フィードバックを分析して貴重な情報を抽出するために、組織によって広く使用されています。しかし、ABSAのためのラベル付けトレーニングデータは、トレーニングサンプル内で側面を手動で細かく識別する必要があるため、手間のかかる作業です。 Intel LabsとHugging Faceは、ドメイン固有のABSAモデルのfew-shotトレーニングのためのフレームワークであるSetFitABSAを紹介しています。SetFitABSAは、few-shotシナリオでLlama2やT5などの生成モデルに比べて競争力があり、さらに優れた性能を発揮します。 LLMベースの手法と比較して、SetFitABSAには次の2つのユニークな利点があります: 🗣 プロンプトが不要です: LLMを使ったfew-shot in-context学習では、結果がもろくなり、表現に敏感になり、ユーザーの専門知識に依存する手作りのプロンプトが必要です。SetFitABSAは、ラベル付けされた少数のテキスト例から直接豊かな埋め込みを生成することで、プロンプトを完全に不要とします。 🏎 高速トレーニング: SetFitABSAは、わずかなラベル付きトレーニングサンプルのみを必要とします。さらに、専門のタグ付けツールを必要としないシンプルなトレーニングデータ形式を使用します。これにより、データのラベリングプロセスが迅速かつ容易になります。 このブログ記事では、SetFitABSAの動作方法と、SetFitライブラリを使用して独自のモデルをトレーニングする方法を説明します。では、さっそく見ていきましょう! どのように機能しますか? SetFitABSAの3つのステージからなるトレーニングプロセス SetFitABSAは3つのステップで構成されています。第1ステップでは、テキストから側面候補を抽出し、第2ステップでは、側面候補を側面または非側面として分類し、最終ステップでは抽出された各側面に感情極性を関連付けます。第2ステップと第3ステップはSetFitモデルに基づいています。 トレーニング 1. 側面候補の抽出…
「音波センサーを使用したロボットのネットワークは、パイプを監視します」
研究者たちは、誘導音波センサーを使用することで、独立したロボットのネットワークが大型パイプの欠陥を検査できることを示しました
ChatGPTの初めての記念日:AIインタラクションの未来を変える
私たちの包括的な記事で、ChatGPTの1年間の旅とオープンソースのLarge Language Models(LLMs)の進化を探求してください技術の進歩、産業への応用、医療への影響、そしてAIの未来についての洞察を深く掘り下げますまた、OpenAIの噂されるQ*モデルについても触れます
「トップ40以上の創発的AIツール(2023年12月)」
ChatGPT – GPT-4 GPT-4は、以前のモデルよりもより創造的で正確かつ安全なOpenAIの最新のLLMです。また、画像、PDF、CSVなどの多様な形式も処理できるマルチモーダル機能も備えています。コードインタープリターの導入により、GPT-4は独自のコードを実行して幻覚を防ぎ、正確な回答を提供することができます。 Bing AI Bing AIは、OpenAIのGPT-4モデルを搭載し、正確な回答を提供するためにウェブを横断することができます。また、ユーザーのプロンプトから画像を生成する能力も持っています。 GitHub Copilot GitHub Copilotは、コードを分析し、即座のフィードバックと関連するコードの提案を提供するAIコード補完ツールです。 DALL-E 2 DALL-E 2はOpenAIによって開発されたテキストから画像を生成するツールで、ユーザーのプロンプトに基づいてオリジナルの画像を作成します。不適切なユーザーリクエストを拒否するように設計されています。 Cohere Generate Cohere Generateは、AIの潜在能力を活用してビジネスプロセスを向上させるものです。メール、ランディングページ、製品の説明など、さまざまな要件に合わせたパーソナライズされたコンテンツを提供します。 AlphaCode AlphaCodeはDeepMindによって開発され、競争力のあるレベルでコンピュータプログラムを作成することができます。 Adobe Firefly…
「RetinaNetとKerasCVを使用した物体検出」
画像セグメンテーションをベースにしたミニプロジェクトを終えた後(こちらをご覧ください)、コンピュータビジョンの一環として、別の一般的なタスクに取り掛かる準備ができました:オブジェクト検出ですオブジェクト検出とは...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.