Learn more about Search Results 14 - Page 12

「Ego-Exo4Dを紹介:ビデオ学習とマルチモーダルパーセプションに関する研究をサポートするための基礎データセットとベンチマークスイート」

今日、AIはほとんどの想像できる分野で応用されています。それは確かに私たちの生活を変え、プロセスを合理化し、効率を向上させてくれました。これまで想像もできなかったことを実現するため、人間のスキル理解をさらに向上させることができるかもしれません。この研究論文では、AIシステムをより優れた人間のスキル理解をするように装備することに焦点を当てています。 人間のスキルを捉えるためには、自己中心的(第一人称)および外向的(第三人称)の視点の両方を考慮する必要があります。さらに、これらの両者の間に連携が必要とされます。他人の行動を自分自身にマッピングすることは、より良い学習のために重要です。既存のデータセットは、自己-外向きのデータセットが非常に限られており、規模が小さく、カメラ間の同期がしばしば欠けているため、この潜在能力を実現するために十分に適していません。この問題に対処するために、Metaの研究者は、Ego-Exo4Dという基礎データセットを導入しました。これは多モーダル、多視点、大規模で、世界中の複数の都市からのさまざまなシーンで構成されています。 より良い理解のためには、時には両方の視点が必要です。たとえば、シェフが第三者の視点から機器を説明し、第一人称の視点から手の動きを見せる場合などです。したがって、より良い人間のスキルを達成するために、Ego-Exo4Dは各シーケンスに第一人称視点と複数の外向き視点を含んでいます。さらに、研究者たちは、すべての視点が時間的に同期していることを保証しています。マルチビューデータセットは、身体のポーズやオブジェクトとの相互作用を捉えるために作成されました。 Ego-Exo4Dは、身体のポーズの動きやオブジェクトとの相互作用を捉えるために、熟練した人間の活動に重点を置いています。このデータセットには、料理、自転車修理など、さまざまなドメインの多様な活動が含まれており、データはラボ環境ではなく本物の環境で収集されています。データの収集には、800人以上の参加者が募集され、堅牢なプライバシーと倫理基準が遵守されました。 このデータセットのすべてのビデオは時間に関連付けられています。つまり、カメラを着用した人物が自分の行動を説明し、第三者が各カメラの映像を説明し、第三者がカメラをつけた人物のパフォーマンスを批評するという特徴があり、他のデータセットとは異なる点です。さらに、トレーニング用の自己-外気データがない場合、熟練した活動の自己中心的な認識において主要な研究課題が生じます。そのため、研究者は、コミュニティがスタートするための出発点を提供するために、一連の基本的なベンチマークを考案しました。これらのベンチマークは、関係、認識、熟練度、自己ポーズの4つのタスクのファミリーに整理されています。 結論として、Ego-Exo4Dは、さまざまなドメインの熟練した人間の活動からなる、前例のない規模の包括的なデータセットです。これは従来のデータセットの欠点を補う、前例のないデータセットです。このデータセットは、活動認識、身体のポーズ推定、AIコーチングなどの多くの領域で応用され、その先にある、多モーダル活動、自己-外向きなどの研究の推進力となると研究者たちは信じています。

2024年に使用するためのトップ5の生成AIフレームワーク

イントロダクション 魅力的なジェネラティブAIフレームワークの世界へようこそ。ここでは、革新と創造性がデジタルの風景で融合する大いなる力、ジェネラティブ人工知能の力について語ります。ジェネラティブAIの力は単なる技術的な驚異にとどまりません。それは、私たちが機械とのやり取りをし、コンテンツを生み出す方法を形作る力強い力です。想像してください:わずかなプロンプトで物語や画像、さらには世界までも作り出す能力。それは魔法ではありません。それが人工知能の進化です。 ジェネラティブAIは単なるアルゴリズムの集合体ではありません。それはオンラインデータの広大な領域によって駆動される創造のパワーハウスです。AIに対してテキスト、画像、ビデオ、音声、複雑なコードの生成をプロンプトで指示することができると想像してみてください。GenAIは学習し進化し続けることで、さまざまな産業におけるその応用は増大しています。その秘密はトレーニングにあります。複雑な数学と大規模なコンピューティングパワーが結集してAIにアウトカムを予測させ、人間の行動や創造を模倣するように教え込むのです。 ジェネラティブAIの世界への旅は、その仕組みの謎を解明することから始まります。ニューラルネットワークはどのように新しいコンテンツを生み出すためのパターンを特定するのでしょうか?ChatGPTやDALL-Eなどのツールを支える基本モデルは何でしょうか?ジェネラティブAIの複雑な利用法や機能について一緒に探求していきましょう。この技術革命の最前線に立つトップ5のフレームワーク。機械が想像力に命を吹き込み、デジタルキャンバスが描く可能性は限りなく広がる旅へご参加ください。 実践的な学習でジェネラティブAIの力を向上させましょう。 GenAI Pinnacle Programをチェックしてください! ジェネラティブAIフレームワークとは ジェネラティブAIフレームワークは、GenAIのバックボーンとなり、機械が多様で文脈に即したコンテンツを作成できるようにするインフラストラクチャを提供します。これらのフレームワークは、LLMs、GANs、VAEsなどのAIモデルのためのガイドラインとなり、広範なデータセット内のパターンを理解することを可能にします。これらのフレームワークを利用することで、組織は教師なしおよび半教師あり学習アプローチのパワーを利用してAIシステムをトレーニングすることができます。このトレーニングは、NLPから画像生成までのタスクを基礎付けており、機械がプロンプトを解釈する能力を向上させます。 Langchain LangChainは、GenAIプロフェッショナル向けの革命的なソフトウェア開発フレームワークとして展開されます。LangChainは、日常のタスクやプロジェクトの風景を再構築するために作られ、大規模言語モデル(LLMs)を活用することを重視しています。MITライセンスのオープンソースの思想の下、LangChainはエージェント、メモリ、チェーンを包括した標準化されたインターフェースを導入します。 LangChainのエージェントは、LLMsが情報を元にした意思決定を行うことを可能にし、ダイナミックなチャットボット、ゲーム、さまざまなアプリケーションの創造を促進します。メモリ機能は価値があり、LLMへの呼び出し間で状態を維持することができます。この機能は、チャットボットのようなアプリケーションにとって基盤となり、一貫性のある会話や前のクエリのアウトカムの保存を可能にします。チェーンは単一のLLM呼び出しを超えて拡張し、シーケンスのオーケストレーションを容易にします。これは要約ツールや質問応答システム、多様な複雑な相互作用を必要とするアプリケーションのための恩恵です。 LangChainのデータ拡張生成機能により、GenAIプロフェッショナルは外部データに基づいたテキストの生成能力をさらに高めることができます。魅力的なニュース記事から商品説明までの作成にLangChainはコンテンツ生成の能力を増幅させます。 LangChainは、顧客サービスや教育のためのチャットボット、娯楽や研究のためのゲーム、そして要約ツールや質問応答システムなど、さまざまなアプリケーションでその能力を発揮してきました。コンテンツ生成、翻訳、コード生成、データ分析、医療診断などさまざまなアプリケーションをカバーしており、ジェネラティブ人工知能の進化する風景において、LangChainはイノベーションと効率性を推進します。 LlamaIndex LlamaIndexは、GenAIプロフェッショナルの武器の中で重要なツールとして浮上しています。GPT-4などのカスタムデータとLLMsの間にシームレスなつながりを提供します。この革新的なライブラリは、データとLLMsを扱う複雑なプロセスを簡素化することで、GenAIプロフェッショナルの日々の業務やプロジェクトを大幅に向上させます。LlamaIndexの多様なユーティリティは、データの取り込み、構造化、検索、統合の各段階で重要なサポートを提供します。 まず、LlamaIndexはAPI、データベース、PDF、外部アプリケーションなどさまざまなソースからデータを「摂取」することに優れており、忠実なデータ収集者として機能します。次に、LLMが簡単に理解できるようにデータを「構造化」する段階に移ります。この構造化されたデータは、「検索」と「取得」の段階で基盤となり、必要なときに正確なデータを見つけて取得するのをLlamaIndexが容易にします。最後に、LlamaIndexは「統合」プロセスをスムーズ化し、さまざまなアプリケーションフレームワークとのデータのシームレスな統合を可能にします。 LlamaIndexは、収集のための「データコネクタ」、組織化のための「データインデックス」、翻訳者としての「エンジン」(LLM)の3つの主要なコンポーネントで動作します。このセットアップにより、GenAIの専門家はLLMの能力とカスタムデータを組み合わせたRetrieval Augmented Generation(RAG)において強力な基盤を提供するLlamaIndexを利用することができます。クエリエンジン、チャットエンジン、エージェントなどのモジュラーな構造は、対話レベルの対話を可能にし、ダイナミックな意思決定を促進します。Q&Aシステム、チャットボット、またはインテリジェントエージェントを作成する場合、LlamaIndexはGenAIの専門家にとって欠かせない味方であり、LLMとカスタマイズされたデータを活用したRAGへの進出を強力にサポートします。 Jarvis マイクロソフトのJARVISプラットフォームはAIのイノベーションをリードし、GenAIの専門家に日常の業務を向上させるための無類のツールを提供しています。JARVISはChatGPTやt5-baseなどのAIモデルと連携し、統一された高度な結果を提供します。タスクコントローラーとしてのJARVISは、画像、ビデオ、オーディオなどのさまざまなオープンソースのLarge Language…

「ChatGPTのボイスチャット機能の使い方」

導入 友達と会話するように、自然な感覚でAIと対話することを想像してみてください。これはもはやSFの夢の中の話ではありませんが、最新のAI技術の革新、ChatGPTの音声チャット機能のおかげで、スリリングな現実となりました。この画期的な進歩により、AIとの対話が私たちの日常生活に取り込まれ、無料ユーザーでもプレミアムサブスクリプションユーザーでも利用できるようになりました。人間と機械の相互作用の境界が曖昧になり、会話がより直感的で魅力的になる新しい時代の境に立っています。この記事では、このエキサイティングな機能を活用するための手順を紹介し、未来について読むだけでなく、実際に体験できるようにご案内します。 ChatGPTの音声機能の利用手順 インストールとセットアップ アプリのダウンロード:ChatGPTアプリをAndroidまたはiOSデバイスにインストールします。 サインイン:アプリを開き、OpenAIアカウントにログインします。 音声チャットの開始 ChatGPTアプリを起動し、チャットボックスの右側に新しく追加されたヘッドフォンアイコンを探します。 アイコンをクリックして、画面の指示に従って音声チャットの設定を最終化します。 音声対話の開始 セットアップが完了したら、もう一度ヘッドフォンアイコンを押してChatGPTとの音声会話を開始します。AIに話しかけると、あなたの声のクエリに応答します。 ChatGPTアプリでの音声の個別設定 音声の変更を行うには、左上のメニューにアクセスし、一番下のアカウントを選択します。 このセクションでは、「音声」カテゴリーの下にある「Voice」オプションを選択します。 ChatGPTに適した声を選択することができます。 この記事も読んでみてください:ChatGPT-4に無料でアクセスする簡単な方法 6 選 なぜChatGPTの音声機能を利用するのか? ChatGPTの音声機能は、従来のテキストベースの対話よりもいくつかの利点を提供します: 自然さの向上:実生活での人間同士の対話と同様に、より自然で直感的なコミュニケーション手段を提供します。タイピングに慣れていないユーザーや音声による対話を好むユーザーに特に有益です。 アクセシビリティの向上:音声対話機能は、ChatGPTの利用を視覚障害を持つユーザーやその他の身体的制約がタイピングを妨げるユーザーにとってよりアクセスしやすくします。これらの個人は声を使ってChatGPTと完全に対話し、制約なくその機能を利用することができます。 コミュニケーションの向上:音声機能により、ChatGPTの会話能力に新たな次元が加わります。音声の抑揚、一時停止、強調を取り入れることで、ChatGPTはテキストのみでは捉えづらい感情やニュアンスを伝えることができます。これにより、ユーザーとAIとのより魅力的で意義のある対話が生まれます。 結論…

「プロダクションに適したRAGアプリケーションの12のチューニング戦略ガイド」

「実稼働のための検索増強生成(RAG)アプリケーションのパフォーマンス向上に調整できる戦略とパラメータ」

「RetinaNetとKerasCVを使用した物体検出」

画像セグメンテーションをベースにしたミニプロジェクトを終えた後(こちらをご覧ください)、コンピュータビジョンの一環として、別の一般的なタスクに取り掛かる準備ができました:オブジェクト検出ですオブジェクト検出とは...

「GoとMetalシェーディング言語を通じてAppleのGPUをプログラミングする」

以下では、GoとネイティブCの間でcgoを使用してインターフェースを作成するプロセス、これを使用してAppleのMetal Performance ShadersフレームワークのObjective-Cバインディングとインターフェースを作成する方法について説明します

Amazon Kendraを使用して保険請求をインテリジェントに処理するために、Amazon Comprehendで作成されたカスタムメタデータを使用します

構造化データとは、データベース内の列に格納された情報のように固定されたパターンに従うデータ、およびテキスト、画像、またはソーシャルメディアの投稿などの特定の形式やパターンを持たない非構造化データの両方が、さまざまな組織で生産され、消費され続けています例えば、国際データコーポレーション(IDC)によると、[…]

「クリスマスラッシュ」3Dシーンが今週の「NVIDIA Studio」でホリデーのチアをもたらします」

編集者の注記:この投稿は、我々の週刊「In the NVIDIA Studio」シリーズの一部であり、特集アーティストを称え、創造的なヒントやトリックを提供し、そしてNVIDIA Studioテクノロジーが創造的なワークフローを向上させる方法をデモンストレーションしています。 友達や家族、そして今週のIn the NVIDIA Studioアーティスト、3Dエキスパートボゾ・バロブによる美しく描かれたサンタのアニメーションを楽しむ季節です。 今週は、驚くべきマイルストーンも達成されました。NVIDIA RTXパワードのゲームとクリエイティブアプリが500以上、レイトレーシングやNVIDIA DLSSなどのAIパワードテクノロジーに対応して利用できます。Adobe Creative Cloudスイート、Autodesk Maya、Blender、Blackmagic DesignのDavinci Resolve、OBS、Unityなど、最も人気のあるアプリ120以上がRTXを使用してワークフローを数倍に加速し、新しいAIツールと機能を提供し、リアルタイムのレイトレーシングプレビューを可能にしています。 これを祝して、NVIDIA GeForceではギフトカード、希少な#RTXONキーボードキーキャップなどをプレゼントするキャンペーンを開催しています。参加方法については、GeForceのFacebook、Instagram、TikTok、またはX(以前のTwitter)をフォローしてください。 💚 THANK YOU FOR 500…

「LLMsを使用して、ロボットの新しいタスクをコーディングする」

研究チームが、大規模な言語モデルを使用してロボットに新しいタスクをコーディングし、それをシミュレートするツールを開発しました

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us