Learn more about Search Results 提供しています - Page 12
- You may be interested
- なぜNASAが国家の秘密を月に送っているのか
- 機械学習を革新する:たった7行のコードで...
- 「ウェブパブリッシャーコントロールの最...
- スマートデバイスのサイバーセキュリティ...
- 「雨は雨を予測するのか?米国の気象デー...
- マストゥゴにお会いしましょう:ディフュ...
- 暗闇で作られた堅牢な光学構造の構築
- 成功に導くデータチームの意思決定
- マイクロソフトが「TypeChat」をリリース...
- 「LLaMaをポケットに収めるトリック:LLM...
- 「ODSC EuropeのML for Financeトラックで...
- 韓国のこの人工知能(AI)論文では、FFNeR...
- 「最終年度のデータサイエンスの学生向け...
- 「人工知能と気候変動」
- ChatGPTで説得力を高めましょう
「Pythonで脂肪尾を数値化する4つの方法」
「これはパワーロウとファットテールに関するシリーズの三番目の記事です前回の記事では、実証データからパワーロウを検出する方法について探求しましたこの技術は便利ですが、ファットテールはさらなる調査が必要です...」
「この男性は誰でもバイラルにすることができます(10か月で21億回の視聴回数)」
「以下は、短編コンテンツで1か月で1億ビューを獲得するための6つのステップのフレームワークです...」
「ノーコードアプリビルダーのトップ10(2023年12月)」
テクノロジーの絶えず進化する風景の中で、ノーコードアプリビルダーの台頭は、アプリ開発の民主化の証ですかつてはベテランプログラマーやソフトウェア開発者の領域にのみデジタルソリューションを作成する時代が終わりましたノーコードプラットフォームは、起業家やビジネスプロフェッショナル、クリエイティブな思考を持つ人々に扉を開いています[…]
ピーター・マッキー、Sonarの開発者担当責任者-インタビューシリーズ
ピーター・マッキーはSonarのDeveloper Relationsの責任者です Sonarは、悪いコードの1兆ドルの課題を解決するプラットフォームであり、開発者や組織にクリーンなコードの状態を体系的に達成し、すべてのコードが開発と生産に適している状態にするための装備を提供します SonarのClean as You Codeの手法を適用することにより、組織はリスクを最小限に抑え、[…]
「大規模言語モデルをより効率的に最適化できるのか?LLMの効率性に関するアルゴリズムの進化についての包括的な調査をご覧ください」
より効率的に大規模言語モデルを最適化できるのか? マイクロソフト、南カリフォルニア大学、オハイオ州立大学など、複数の組織の研究者からなる研究チームが、LLM(大規模言語モデル)の効率向上を目指したアルゴリズムの進歩について徹底的なレビューを提供しています。スケーリングの法則、データの利用、アーキテクチャの革新、トレーニング戦略、推論技術などを網羅し、将来の効率的なLLM開発の礎を築こうとしています。 スケーリングの法則、データの利用、アーキテクチャの革新、トレーニング戦略、推論技術をカバーし、LLMの核心的な概念と効率指標について説明しています。このレビューでは、効率的なLLM開発に貢献する方法論の最新の総合的な概要を提供しています。研究者は関連する研究の見落としを認識し、さらなる参考文献の提案を推奨しています。 LLMは自然言語理解において重要な役割を果たしていますが、高い計算コストのために誰にでも簡単にアクセスできるものではありません。この課題に取り組むために、研究者は効率を向上させ、アクセス性を高めるためのアルゴリズムの進歩を継続的に行っています。これらの進歩は、AI、特に自然言語処理の領域における将来のイノベーションの道を切り拓いています。 この研究は、LLMの効率を向上させるアルゴリズムの進歩を調査しています。スケーリングの法則、データの利用、アーキテクチャの革新、トレーニング戦略、推論技術など、さまざまな効率の側面を検討しています。Transformer、RWKV、H3、Hyena、RetNetなどの具体的な方法が言及されています。議論には知識の蒸留法、コンパクトなモデル構築法、注意モデリングと計算の最適化のための頻度ベースの技術などの具体的な手法が含まれています。 この調査は、特定の領域に焦点を当てるのではなく、多様な効率の側面をカバーするLLMの効率についての包括的な視点を採用しています。貴重な情報源として役立ち、LLMの効率に関する今後のイノベーションの基盤を築いています。参考文献リポジトリを含めることで、この重要な分野のさらなる探求と研究のための有用性が高まります。ただし、研究の特定の結果や方法の詳細は、提供されたソースに明示的に記載されるべきです。 まとめると、この調査では、LLM技術の効率を高めるための最新のアルゴリズムの進歩について詳しく説明しています。スケーリングの法則、データの利用、アーキテクチャの革新、トレーニング戦略、推論技術をカバーしています。アルゴリズムの解決策の重要性を強調し、モデルの圧縮、知識の蒸留、量子化、低ランク分解などの手法を探求し、LLMの効率を向上させることになります。この包括的な調査は、LLMの効率の現状についてさまざまな貴重な洞察を提供する必須のツールです。
「Pythonにおけるコードゴルフ:簡潔なプログラミングの技術をマスターする」
紹介 コードゴルフはプログラミングの魅力的な概念であり、開発者が与えられた問題を解決するために最も短いコードを書く競い合いです。これは、目的の結果を得るために可能な限り少ない文字数を使用することを目指すゲームに似ています。この記事では、Pythonのコードゴルフの方法、困難さ、アドバイス、およびベストプラクティスについてすべて説明します。 Pythonにおけるコードゴルフの技法 Pythonのシンプルな構文と表現力を活用することで、コードゴルフにはPythonがよく選ばれます。以下のいくつかの技法を使用することで、簡潔なコードを書くことができます: 文字列操作: Pythonの文字列操作の機能を使用すると、コンパクトなコードを作成することができます。文字列のスライス、連結、フォーマットを使用することで、開発者はより少ない文字数で目的の結果を得ることができます。 リスト内包表記: リスト内包表記はPythonの強力な機能であり、リストの簡潔な作成や操作を可能にします。ループや条件文を1行のコードに組み合わせることができ、全体の長さを短縮することができます。 例: 元のコード squares = []for x in range(10): squares.append(x**2) コードゴルフ squares = [x**2 for x in…
「大規模言語モデルの微調整方法:ステップバイステップガイド」
2023年、アルパカ、ファルコン、ラマ2、およびGPT-4のような大規模言語モデル(LLM)の台頭は、人工知能の民主化の傾向を示しています
「GoogleのNotebookLMを使用したデータサイエンス:包括的ガイド」を使ってみよう
このブログ記事では、NotebookLMの機能、制約、および研究者や科学者にとって重要な高度な機能について探求します
「Googleが最新のAIモデルGeminiを発表」
Google DeepMindのCEO兼共同創設者であるデミス・ハサビスとGoogleのCEOサンダー・ピチャイは、待望のAIモデル「ジェミニ」を紹介しましたこのテックジャイアントのAIモデルは、人工知能の領域を再定義すると言われています同社のブログ投稿によれば、ジェミニは最先端の機能を提供し、OpenAIをも凌駕する可能性があると約束されています...
SQLを練習するための最高のプラットフォーム
SQL、またはStructured Query Language(構造化クエリ言語)は、データベースの言語です。コンピュータがデータを理解し管理するための方法です。データアナリスト、科学者、エンジニアを目指す場合、SQLはテックワールドで必須のスキルです。このガイドでは、SQLのスキルを磨き、データ関連の面接で成功するための最良のプラットフォームをご紹介します。ですから、SQLの問題に困ったことがあるのであれば、心配しないでください。夢の役割に向けて、SQLのパワーを引き出すためのツールを持っています。 HackerRank HackerRankは、SQLスキルを磨くための素晴らしいプラットフォームであり、難易度のレベルやSQLのトピックによってカテゴリ分けされた様々な練習問題を提供しています。基本的なクエリから高度な最適化まで、中級者から上級者まで対応しています。 また、プラットフォームには時間制限付きのスキル認定テストもあり、自分のSQLの熟練度を評価することができます。HackerRankのゲーム感覚のアプローチで学習が楽しくなり、成果を示すバッジも獲得することができます。全体的には、SQLの専門知識を高めるためのダイナミックなリソースです。 Leetcode LeetCodeは人気のあるコーディングプラットフォームであり、SQLの問題についてもさまざまなスキルレベルのユーザー向けに問題を提供しています。実世界の問題解決に重点を置いており、ユーザーは企業のタグによって問題を絞り込むことができ、特定の業界のニーズに合わせて準備することができます。 ただし、無料アカウントでは利用できる問題の一部に制限があります。それでも、手順ごとの学習よりも問題解決に重点を置いているため、初心者にはより難しいかもしれません。 StrataScratch StrataScratchは、SQLの面接練習において手放せないプラットフォームであり、幅広い問題集を提供しています。トピックや難易度でフィルタリングすることもでき、企業固有のSQL面接の質問も探索することができます。コーディングワークスペースでは、PostgreSQL、MySQL、Microsoft SQL Server(ベータ版)をサポートしており、Pythonユーザーはpandasを活用して問題解決できます。 無料アカウントでは、解答付きの50問にアクセスでき、500以上のSQL問題に取り組む機会もありますので、StrataScratchはSQLスキルを磨くための貴重なリソースです。 SQLZOO SQLZooは、SQLを学び、実践するための初心者にやさしいプラットフォームです。インタラクティブなチュートリアルと演習を提供し、ユーザーは基本的な文からウィンドウ関数のようなより高度な概念まで進むことができます。 このプラットフォームでは、SQLクエリを直接ウェブブラウザで実践することができ、リアルタイムフィードバックを提供します。さまざまなSQLトピックを網羅していますが、シミュレートされたデータベースを使用しているため、実際のアプリケーションに適しているとは言い難いです。 SQLPAD SQLPadは、SQLクエリの実践と結果の視覚化を行うために設計されたWebアプリケーションです。シングルテーブルとマルチテーブルの操作、ウィンドウ関数など、さまざまなSQLトピックをカバーしています。このプラットフォームでは、難易度の異なる質問を提供し、以下のような業界別にカテゴリ分けしています:フィンテック、eコマース。 Postgres、MySQL、SQL Serverなど、複数のデータベースをサポートするSQLPadでは、無料アカウントで練習問題にアクセスすることができます。SQLスキルを実践を通じて磨くための貴重なツールであり、SQLとPythonのインタビューで優れた成績を収めたいデータ分析の専門家にとって有益です。 SQLFiddle SQLFiddleは、さまざまなデータベースシステム上でSQLクエリを書き、実行するための使いやすいWebツールです。MySQLやPostgreSQLなどの異なるシステムでテストできる機能を持ち、実際のデータベースと作業しているかのような体験ができます。SQLコードの共有やヘルプを求めるプラットフォームとしても優れていますが、初心者がSQLを学ぶための包括的な教材としてはあまり向いていません。 DataLemur…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.