Learn more about Search Results これ - Page 12

Google AIは、MediaPipe Diffusionプラグインを導入しましたこれにより、デバイス上で制御可能なテキストから画像生成が可能になります

最近、拡散モデルはテキストから画像を生成する際に非常に成功を収め、画像の品質、推論のパフォーマンス、および創造的な可能性の範囲の大幅な向上をもたらしています。しかし、効果的な生成管理は、特に言葉で定義しにくい条件下では依然として課題となっています。 Googleの研究者によって開発されたMediaPipe拡散プラグインにより、ユーザーの制御下でデバイス内でのテキストから画像の生成が可能になります。本研究では、デバイスそのもの上で大規模な生成モデルのGPU推論に関する以前の研究を拡張し、既存の拡散モデルおよびそのLow-Rank Adaptation(LoRA)のバリエーションに統合できるプログラマブルなテキストから画像の生成の低コストなソリューションを提供します。 拡散モデルでは、イテレーションごとに画像の生成が行われます。拡散モデルの各イテレーションは、ノイズが混入した画像から目標の画像までを生成することで始まります。テキストのプロンプトを通じた言語理解は、画像生成プロセスを大幅に向上させています。テキストの埋め込みは、テキストから画像の生成のためのモデルにリンクされ、クロスアテンション層を介して結びつけられます。ただし、物体の位置や姿勢などの詳細は、テキストのプロンプトを使用して伝えるのがより困難な例です。研究者は、条件画像からの制御情報を拡散に追加することで、拡散を利用して制御を導入します。 Plug-and-Play、ControlNet、およびT2Iアダプターの方法は、制御されたテキストから画像を生成するためによく使用されます。Plug-and-Playは、入力画像から状態をエンコードするために、拡散モデル(Stable Diffusion 1.5用の860Mパラメータ)のコピーと、広く使用されているノイズ除去拡散暗黙モデル(DDIM)逆推定手法を使用します。これにより、入力画像から初期ノイズ入力を導出します。コピーされた拡散からは、自己注意の空間特徴が抽出され、Plug-and-Playを使用してテキストから画像への拡散に注入されます。ControlNetは、拡散モデルのエンコーダーの訓練可能な複製を構築し、ゼロで初期化されたパラメータを持つ畳み込み層を介して接続し、条件情報をエンコードし、それをデコーダーレイヤーに渡します。残念ながら、これによりサイズが大幅に増加し、Stable Diffusion 1.5では約450Mパラメータとなり、拡散モデル自体の半分となります。T2I Adapterは、より小さなネットワーク(77Mパラメータ)であるにもかかわらず、制御された生成で同等の結果を提供します。条件画像のみがT2I Adapterに入力され、その結果がすべての後続の拡散サイクルで使用されます。ただし、このスタイルのアダプターはモバイルデバイス向けではありません。 MediaPipe拡散プラグインは、効果的かつ柔軟性があり、拡張性のある条件付き生成を実現するために開発されたスタンドアロンネットワークです。 訓練済みのベースラインモデルに簡単に接続できる、プラグインのようなものです。 オリジナルモデルからの重みを使用しないゼロベースのトレーニングです。 モバイルデバイス上でほとんど追加費用なしにベースモデルとは独立して実行可能なため、ポータブルです。 プラグインはそのネットワーク自体であり、その結果はテキストから画像への変換モデルに統合されます。拡散モデル(青)に対応するダウンサンプリング層は、プラグインから取得した特徴を受け取ります。 テキストから画像の生成のためのモバイルデバイス上でのポータブルなオンデバイスパラダイムであるMediaPipe拡散プラグインは、無料でダウンロードできます。条件付きの画像を取り込み、多スケールの特徴抽出を使用して、拡散モデルのエンコーダーに適切なスケールで特徴を追加します。テキストから画像への拡散モデルと組み合わせると、プラグインモデルは画像生成に条件信号を追加します。プラグインネットワークは、相対的にシンプルなモデルであるため、パラメータはわずか6Mとなっています。モバイルデバイスでの高速推論を実現するために、MobileNetv2は深度方向の畳み込みと逆ボトルネックを使用しています。 基本的な特徴 自己サービス機械学習のための理解しやすい抽象化。低コードAPIまたはノーコードスタジオを使用してアプリケーションを修正、テスト、プロトタイプ化、リリースするために使用します。 Googleの機械学習(ML)ノウハウを使用して開発された、一般的な問題に対する革新的なMLアプローチ。 ハードウェアアクセラレーションを含む完全な最適化でありながら、バッテリー駆動のスマートフォン上でスムーズに実行するために十分に小さく効率的です。

これをデジタルパペットにしてください:GenMMは、単一の例を使用して動きを合成できるAIモデルです

コンピュータ生成のアニメーションは、毎日より現実的になっています。この進歩は、ビデオゲームで最もよく見ることができます。トゥームレイダーシリーズの最初のララ・クロフトと最新のララ・クロフトを考えてみてください。私たちは、230ポリゴンのパペットがおかしな動きをするのから、スクリーン上でスムーズに動くリアルなキャラクターに移行しました。 コンピュータアニメーションで自然で多様な動きを生成することは、長年にわたって難しい問題でした。モーションキャプチャシステムや手動アニメーション作成などの従来の方法は、高価で時間がかかり、スタイル、骨格構造、モデルタイプに多様性が欠けた動きのデータセットに結果をもたらします。アニメーション生成のこの手動で時間がかかる性質は、業界に自動化された解決策が必要とされています。 既存のデータ駆動型のモーション合成手法は、その効果が限定的です。しかし、近年、ディープラーニングがコンピュータアニメーションにおいて多様で現実的な動きを生成することができる強力な技術として登場しました。大規模かつ包括的なデータセットでトレーニングされた場合、多様で現実的な動きを合成できます。 ディープラーニング手法は、モーション合成において印象的な結果を示していますが、実用的な適用性が制限される欠点があります。まず、長時間のトレーニングが必要であり、アニメーションの製作パイプラインにおいて大きなボトルネックとなる可能性があります。さらに、ジッタリングや過度なスムージングなどの視覚的なアーティファクトが生じるため、合成された動きの品質に影響を与えます。最後に、複雑な骨格構造にスケーリングするのが困難であるため、複雑な動きが必要なシナリオで使用が制限されます。 私たちは、実用的なシナリオで適用できる信頼性のあるモーション合成手法が需要があると知っています。しかし、これらの問題を克服することは容易ではありません。では、解決策は何でしょうか?それでは、GenMMに出会う時間です。 GenMM は、モーション最近傍とモーションマッチングの古典的なアイデアに基づく代替アプローチです。キャラクターアニメーションに広く使用されるモーションマッチングを利用し、自然に見え、さまざまなローカルコンテキストに適応した高品質のアニメーションを生成します。 GenMMは、単一の入力を使用してモーションを生成できます。出典:http://weiyuli.xyz/GenMM/ GenMM は、単一または少数の例のシーケンスから多様な動きを抽出できる生成モデルです。これは、自然な動き空間全体の近似として広範なモーションキャプチャデータベースを活用することによって達成されます。 GenMM は、新しい生成コスト関数として双方向の類似性を組み込んでいます。この類似度測定により、合成されたモーションシーケンスには提供された例からのモーションパッチのみが含まれ、その逆も同様です。このアプローチは、モーションマッチングの品質を維持しながら、生成能力を可能にします。多様性をさらに高めるために、例と比較して分布の不一致が最小限に抑えられたモーションシーケンスを段階的に合成するマルチステージフレームワークを利用しています。また、画像合成におけるGANベースの手法の成功に着想を得て、パイプラインに対して無条件のノイズ入力が導入され、高度に多様な合成結果が実現されています。 GenMMの概要。出典:https://arxiv.org/pdf/2306.00378.pdf 多様なモーション生成能力に加え、GenMMは、モーションマッチング単独の能力を超えたさまざまなシナリオに拡張できる汎用的なフレームワークであることが証明されています。これには、モーション補完、キーフレームによる生成、無限ループ、モーション再構成が含まれ、生成モーションマッチングアプローチによって可能になる広範なアプリケーションの範囲を示しています。

不正行為はこれで終わり!Sapia.aiがAIによる回答をリアルタイムで検出!

Sapia.aiは、ChatGPTなどの生成AIモデルによって作成された応答をリアルタイムで特定およびフラグ付けする新機能を発表し、興奮を呼んでいます。Sapia.aiは、深層学習AIによって駆動される世界最先端のスマートチャットプラットフォームです。この先駆的な機能により、Sapia.aiは競合他社と差別化され、AIパワードチャットプラットフォームの領域で重要なアドバンテージを提供します。この革新的な開発がオンラインチャット面接の景色を変える方法を深く理解しましょう。 また、2023年のデータサイエンス面接の準備方法を読む ゲームチェンジング機能を発表する Sapia.aiの最新機能は、生成AIモデルからの応答を素早く検出およびフラグ付けするという前例のない能力を導入します。Sapia.aiは、2.5百万人の候補者による壮大な12百万応答から収集された10億語の独自のデータセットを活用することで、AIによる対話型プラットフォームで驚異的なマイルストーンを達成しました。 グローバルブランドの信頼 世界的に有名なブランドは、採用や昇進プロセスを迅速かつ効果的にするためにSapia.aiを利用しています。会話型自然言語処理(NLP)に基づくAI面接により、Sapia.aiは大規模に候補者をスクリーニングおよび評価します。使いやすいメッセージングプラットフォームがこの技術を実現します。この新技術により、無意識的な偏見を取り除き、多様性の結果を改善します。また、企業は候補者のスクリーニングに費やす数時間を、より価値のあるタスクに再割り当てすることができます。 また、EUはDeepfakesおよびAIコンテンツの識別措置を求めています。 正確な応答をするための候補者のエンパワメント Sapia.aiによって新たに導入された機能は、候補者がプラットフォーム内のプロンプトに応答するために生成AIツールを使用することを防止します。リアルタイムで、候補者は回答がAI生成コンテンツ(AGC)である可能性があるときにアラートを受け取り、最終提出前に修正して正確な回答を提供する機会を得ることができます。変更されなかった場合、システムはすぐに決定者に候補者の応答にAGCの存在がある可能性を通知し、徹底的なレビュープロセスを確保します。 バーブ・ハイマンのビジョン Sapia.aiのCEO兼創業者であるバーブ・ハイマンは、この革新的な機能の独自性に重点を置き、競合他社とは異なると述べています。ハイマンは、「これは競合他社ができないことです。これが私たちの競争上の優位性です。ChatGPTを分析して生成AIを検出することは可能ですが、リアルタイムで実行しています。また、私たちのデータセットにより、新しい生成AIのイテレーションにすぐに適応できます」と述べています。 無類の精度と専門知識 Sapia.aiのチーフデータサイエンティストであるDr. Buddhi Jayatillekeは、AGCフラグの信頼性を確保するために行われた厳密なテストプロセスを強調しています。チームは、異なる役割ファミリーに関連するさまざまなプロンプトに対して、GPT-2、GPT-3、ChatGPTなどの人気のある生成AIモデルを使用して数千の生成された回答を広範囲にテストしました。ROC-AUC(受信者動作特性-曲線下面積)スコアが95%以上という驚異的な成果は、分類器の優れた精度を示しています。この驚異的な精度は、Sapia.aiの人間が書いた応答データの豊富な収集によって磨かれた、人間が書いたテキストとAIモデルによって生成されたコンテンツの公式化された性質との微妙な違いを区別する能力によるものです。 また、AI-Detectorは米国憲法をAI生成としてフラグ表示しました。 当社の見解 Sapia.aiによるオンラインチャット面接でのAI生成コンテンツの検出能力は、AIパワード会話型プラットフォームの分野を革新しています。生成AIモデルからの応答をリアルタイムで特定するという前例のない能力により、Sapia.aiは競合他社よりも重要なアドバンテージを確保しています。この成果により、チャットベースの面接の信頼性が向上し、候補者のより正確かつ信頼性の高い評価が提供されます。新しい生成AIのイテレーションにシームレスに適応するAI革新の限界を押し広げ続けるSapia.aiにご期待ください。

「言語モデルの逆スケーリングの謎を解明する」

This aspect of inverse scaling is a crucial point to keep in mind, as it can affect the performance of larger LLMs. However, this…

学校でのAI教育の台頭:現実と未来の可能性のバランス

多くの野心的なティーンエイジャーたちは、AIについて学ぶ機会をより充実させるよう学校に提唱しています

チャットボットは学校での不正行為を助長しているのか?最新の研究結果が驚くべき結果を明らかにしています

「スタンフォード大学の研究者によると、ChatGPTなどのA.I.ツールの使用は高校での不正行為の増加にはつながらなかったということが分かりましたこの結果は、この種のツールの効果的かつ倫理的な使用を証明する上で非常に価値があります」

ロボット犬が世界記録を速度で打ち立てました

韓国先端科学技術院は、ギネス世界記録において、犬のような能力を備えた4足歩行ロボットの見事な創造力により認められましたこの驚くべき成果は、チームの献身と専門知識を証明し、その発明を最速のものとして位置付けました

「自律走行車とトロリー問題:「良い」決定を探し求めて」

North Carolina State Universityの熱心な研究チームが、日常の交通シナリオで生じる倫理的ジレンマについて正確かつ関連性の高いデータを積極的に収集していますこの貴重な情報は、低リスクな状況の複雑さをより深く理解し、私たちの道徳的な意思決定能力を改善するのに役立ちます

ウェアラブルフィットネストラッカー:早期疾患の検出の可能性を開く

消費者向けと医療用のウェアラブルが融合のばしょにあるかもしれませんか?ウェアラブルが融合して、より価値のあるものになるかもしれません

驚くべき発見:AIが未解決の数学問題を解決する方法

「生産の大部分を捨てる必要があったにもかかわらず、価値のある宝石が捨てられた不用品の中に見つかりました」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us