Learn more about Search Results がん - Page 12
- You may be interested
- AIマニア:バブルがはじける方向に向かっ...
- 大規模言語モデル:新たなモーアの法則?
- 「2023年に試してみるべき20の中間旅行の...
- RAGアプリケーションデザインにおける実用...
- 「Pandasの結合操作を実行するための長す...
- 「T2Iアダプタを使用した効率的で制御可能...
- このAI論文では、新しい個別化留留過程を...
- アンサンブル学習:決定木からランダムフ...
- ChatGPTを使用して顧客の洞察を見つける
- MongoDBで結合操作を実行するためのシンプ...
- 「AIと働き方の未来:AI時代における労働...
- 「ウェブマップを使用した空間データの表示」
- 「Stitch FixにおけるMLプラットフォーム...
- 「オートエンコーダーメソッドを使用したT...
- 新しいトピックを本当に学ぶには、時間を...
退屈なプレゼンテーションを素晴らしいものに変える:プレゼンテーションを改善する7つのハック
イントロダクション HBrが言うように、「良いプレゼンテーションにはデータが必要ですが、データだけでは良いプレゼンテーションを保証することはできません。」PowerPointやCanvaの時代にあって、情報を提示することがこれまで以上に容易になった中で、プレゼンターが「この図表は見づらいかもしれませんが、〜を示しています」と言うのを聞いたことがない人は手を挙げてください。本質を伝えるのに苦労するプレゼンテーションよりも最悪な状況は何でしょうか? 働くプロフェッショナルは、タスクの向上と完璧さに取り組むために重要な努力が必要であることを知っています。例えば、データアナリストとして、データ分析の完璧さを追求するために非常に努力し、最新の技術トレンドについて学び、機械学習モデルを構築することに専念しています。しかし、よく見落とされがちな重要なスキルの一つは魅力的なプレゼンテーションを作り上げる能力です。自分の努力と取り組みを明確かつ効率的に観衆に伝えるために、プレゼンテーションを改善し、観衆を引き込むものにしなければなりません。また、情報に基づいた意思決定を促進する必要があります。 効果的なプレゼンテーションの力 プレゼンテーションは、グラフ、図表、地図などのさまざまな手法を用いて情報を視覚的に表現することで、視覚的な補助を通じて理解を促進します。データの視覚的表現は、形式、ツール、利用可能なデータ、データセットのサイズなどの要素に依存します。 プレゼンテーションを作成する際には、ターゲット観衆、明確な内容、必要なグラフィックス、表や図表、簡単に理解できる情報、明確な説明など、重要な要素を考慮してください。効果的なプレゼンテーションの力は見過ごすことができず、自分の努力を表示し、組織の変革を促すことができます。 超魅力的なプレゼンテーションを作るための7つのヒント 効果的なプレゼンテーションを作成する際に考慮すべき重要なポイントは多岐にわたります。しかし、プレゼンテーションを改善し、超魅力的なものにするための7つの主要なヒントは以下の通りです。 1. 観衆を知る あくまで結果に重点を置くのではなく、プレゼンテーションを観衆に合わせて作成することが重要です。観衆のバックグラウンドや彼らがあなたの結果から求めるものを理解することは、プレゼンテーションを効果的に構成するのに役立ちます。 このアプローチはデータを無視するものではありません。むしろ、データを理解しやすくプレゼンテーションを行うことで観衆の議論や主張を支持する方法です。アナリストの結果の伝達方法が観衆にとって理解しづらい場合、最も優れたプレゼンテーションであっても失敗する可能性があります。 プレゼンテーションを作成する前に、以下の質問を考えることでプレゼンテーションを改善することができます。 このプレゼンテーションの観衆は誰ですか? 彼らはあなたの分野の技術的な熟練度をどれくらい持っていますか? 彼らは対象の内容にどれくらい精通していますか? 彼らはどんな特定の興味、ニーズ、期待を持っていますか? 観衆のメンタル状態はどうですか?以前のミーティングや長時間のカンファレンスで疲れている可能性がありますか? 設定は形式的ですか非形式的ですか? これらの質問に答えることで、重要な情報を強調すべきかどうか、データがプレゼンテーションに最も役立つ方法を知ることができます。観衆の専門知識に合わせてコンテンツを適応し、望ましい要点を定義し、プレゼンテーションの設定を考慮することで、より効果的なプレゼンテーションを作成することができます。 2. データを使ったストーリーテリング ビジネスプレゼンテーションでは、「Situation-Complication-Resolution(SCR)」というアプローチが効果的なフレームワークとして機能し、プレゼンテーションを改善する助けとなります。この方法は、バーバラ・ミントがマッキンゼー・コンサルティングでの任期中に著書「ピラミッド・プリンシプル」で人気を博し、魅力的なビジネスストーリーを構築するための効果的な構造を提供します。このシンプルな方法は、行動志向の結果を促進し、コンテンツを整理し、Rule of…
「Amazon SageMaker Studioを使用してBMWグループのAI/MLの開発を加速」
この記事は、BMWグループのマルク・ノイマン、アモール・シュタインベルク、マリヌス・クロメンフックと共同で執筆されましたBMWグループは、ドイツ・ミュンヘンに本社を置き、世界中で149,000人の従業員を擁し、15カ国にわたる30を超える生産・組み立て施設で製造を行っています今日、BMWグループは世界のプレミアム自動車メーカーのリーディングカンパニーです
『ブンブンの向こう側 産業における生成型AIの実用的な応用を探求する』
イントロダクション 現代の世界は「ジェネレーティブAI」という言葉で賑わっています。McKinsey、KPMG、Gartner、Bloombergなどのトップのテクノロジー企業や経営コンサルティング企業は、この新しい技術の力を測定し、将来を予測するために常に研究を行っています。これらの調査は、ジェネレーティブAIの企業への影響が急速に増大しており、今日の職場で必須のスキルとなっていることを示しています。調査結果によると、ジェネレーティブAIは2032年までに1.3兆ドルの市場となり、誰もがその一部になりたがるでしょう。この記事では、さまざまな産業におけるジェネレーティブAIの応用、成長、および影響について、そしてあなたがこのグローバルな変化の一部になる方法について説明します。 ジェネレーティブAIとは何か?その規模はどれくらいか? ジェネレーティブAIはもはや単なるバズワードではありません。この新しい技術は、AIが新しいコンテンツを作成し、実践を通じて学習することができるもので、世界中で注目を集めています。ジェネレーティブAIツールは、基本的にはトレーニングデータに基づいてコンテンツを生成できる大規模な学習モデル(LLM)です。これらのモデルは、トレーニングデータからパターンや構造を学び、類似のパターンに従う出力を生成できます。これらのモデルは、画像、動画、音楽、音声、テキスト、ソフトウェアコード、製品デザインなどを作成することができます。現在利用可能な大量のトレーニングデータのため、この技術の可能性は無限です。 過去数ヶ月間、ジェネレーティブAIの分野は着実に拡大し、毎日新しい応用とユースケースが発見されています。企業レベルでは、ジェネレーティブAIの統合により、より速いアウトプット、より高い生産性、経済成長が実現されています。その結果、多くの企業が時間とコストを節約するためにジェネレーティブAIを使用しています。 ジェネレーティブAIの企業応用には、自動化、人間または機械の増強、ビジネスおよびITプロセスの自立実行などが含まれます。McKinseyによると、世界中の企業はジェネレーティブAIツールの導入により、生産性の向上とリスクの最小化を最大限に活用しています。企業は今後、自身の仕事においてジェネレーティブAIを熟達することが求められるでしょう。 ジェネレーティブAIのビジネス面 ジェネレーティブAI市場には、モデルトレーニングインフラ、LLM向け推論デバイス、デジタル広告、特殊ソフトウェアとサービス、個人化アシスタント、およびコーディングの加速を可能にする共同作業者が含まれています。ジェネレーティブAIツールとソフトウェアを開発する企業がこの領域で最も恩恵を受けていますが、これら製品の応用はさまざまな産業の利益を支援しています。 では、ジェネレーティブAIは今日ではどれくらい大きな存在なのでしょうか?2022年には、ジェネレーティブAI市場は400億ドルと評価されており、時間の経過とともに成長しています。Bloomberg Intelligenceによると、ジェネレーティブAIは2032年までに42%の複合年間成長率を示し、1.3兆ドルの市場となると予測されています。 2023年:企業におけるジェネレーティブAIのブレイクイヤー ジェネレーティブAIは2020年以来、ガートナーの人工知能のハイプサイクルに登場しています。しかし、2023年はジェネレーティブAIのブレイクイヤーとなっています。この技術は比較的新しいものですが、ほぼすべての産業の重要な一部になるほど成長しています。 McKinseyの国際的なレポートによると、主要企業の33%が既にジェネレーティブAIを使用しており、その他の25%はAIの統合のプロセスにあると報告されています。また、レポートは、Cレベル幹部の22%が仕事でAIツールを使用していることも示しています。 技術の新たな使用法や応用が発見されるにつれて、その利用範囲もさらに拡大しています。すべての産業のすべてのレベルでのジョブロールは自動化され、人間の介入が最小限に抑えられ、人間の労働時間がより重要なタスクに割り当てられるようになっています。したがって、企業はAIのスキルを持つ人材を求めており、それが彼らに優位性をもたらしています。 さらに、McKinseyの調査によると、40%の企業がAIへの投資を拡大する予定です。つまり、すべての仕事においてある程度のレベルでAIの機能が関与するようになる可能性があることを示しています。私たちは皆、それに備えて準備をする必要があるのです。 エンタープライズリーダーがジェネレーティブAIについて考えていること 世界中のビジネスリーダーは、ジェネレーティブAIの可能性に興味を持ち、それが真に革新的な存在だと確信しています。オラクル・アナリティクス・クラウドの上級主任データサイエンティストであるヴィカス・アグラワル博士は、ジェネレーティブAIが特にテキストやユーザーインターフェースに関連する分野で企業ソリューションを革新する可能性を持っていると断言しています。「AIツールが進化するにつれて、データサイエンティストはこれらのツールを操作するだけでなく、それらを強化・改善するスキルを必要とする」と彼は述べました。 同様のことを言うと、データイクの元AI戦略責任者であるジェプソン・テイラー氏は、AIスタートアップの成功は適切な人材の採用にかかっていると述べています。彼はNYUでAIマスタークラスの共同リーダーとして、AIシステムが自律的にコードを書き換えおよび強化できる未来を予見し、より効率的かつ強力なアプリケーションをもたらすと述べています。 Beans.aiの応用AI責任者であるサンディープ・シンは、Analytics Vidhyaとのインタビューで、インドと米国のAIエコシステムを比較しました。「インドのAIエコシステムは、研究に重点を置いたベイエリアのAI研究風景とは異なり、急速な採用と商品化が可能な位置にあります」と彼は述べました。 インドの業界リーダーについては、Fractal Analyticsの最高経営責任者(CEO)、共同創業者、副議長であるスリカント・ヴァラマカンニ氏が挙げられます。彼は、組織内のほとんどの機能が自動化され、更新され、優位性を持ち続けるためには、最新の情報にアップデートし、エッジを持つ必要があると信じています。 GramenerのCEO兼チーフデータサイエンティストであるアナンド・S氏は、Googleのローンチ以来、ジェネレーティブAIを次なる大きなトピックと見ています。彼はすでに自身のコーディング作業のほとんどをAIにアウトソースし、さまざまなタスクをこなすために多くのLLM(Low-Level Machine)を訓練しており、それによって仕事を最適化し、時間を節約しています。…
「リアルAI社が、ヨーロッパのオープンソースの大規模言語モデルの構築プロジェクトに勝利」
2023年11月23日(木)、ベルグラードで開催されたデータサイエンスカンファレンス2023で、Real AIがISCRAプロジェクトを受賞したと発表されました。Real AIは、世界第4位のAIコンピュータクラスター「LEONARDO」において、ヨーロッパ初の人間中心のLLM(Large Language Model)を構築するために選ばれました。 LEONARDO – 世界第4位のAIクラスターボローニャのCINECAデータセンターにあるLeonardoスーパーコンピュータは、高性能なコンピューティングパワーを備えた存在です。Atos BullSequana XH2000コンピュータシステムを基盤とし、約14,000のNvidia Ampere GPUを組み込んで構築されています。2022年11月のオープン時点では、Leonardoは世界で4番目に速いスーパーコンピュータであり、ヨーロッパで2番目に速い位置にありました。この技術力は、Leonardoをヨーロッパ全体でAIアプリケーションの発展に重要な資産として位置付けています。 REAL AIの特筆すべき機会「私たちは、責任あるAIの開発にヨーロッパの答えを提供することを目指しています。UNINAとAIスーパーコンピュータークラスター’Leonardo’と共に、これを可能にすることができます。」- Real AI B.V.のCEOであるタリー・シン氏 Real AIは、Leonardoから大幅な計算能力を割り当てることにより、ゼロからLLMの開発を大幅に加速するため、初の人間中心のLLMを構築します。この野心的なプロジェクトにより、Real AIはAI開発の最前線に立ち、環境保護と技術革新に取り組むことを表明しています。 プロジェクトHOMINIS:インテリジェントで中立かつ包括的なシステムのためのヒューマンセンタードなオープンソースモデル。プロジェクトHOMINISは、オープンで検査可能なデータセットを使用して、倫理的かつバイアスのないAIシステムの革新を目指しています。ウェブスケールのデータセットにおける有害性への対処により、AIの基盤モデルに持続可能な代替手段を提案しています。このプロジェクトの4つの主要目標は次のとおりです:1)科学論文や知識ベースなど、さまざまな情報源からハイバリューで多様なデータセットを編集し、バイアスのあるコンテンツを排除すること。2)トランスフォーマーモデルに関する広範な検討研究を実施し、代替アーキテクチャを探索すること。3)高度な技術を用いて基盤モデルを最適化し、コミュニティの協力のもとに予備版をリリースすること。4)倫理的一致性となるための指示のチューニングを実装し、責任あるトレーニング済みAIモデルの最終リリースにつなげること。さらに、HOMINISはFlash Attentionとルーティングといった革新的な手法を用いてエネルギー消費を削減し、データ処理効率を向上させ、モデルの干渉と知識統合を強化することを目指しています。REAL AIとUNINA、NVIDIAのパートナーシップ:The University…
意思決定木の結果をより良くするための一つのステップ
DTは訓練されていますナチュラルな過学習が発生していますハイパーパラメーターが調整されます(不十分ですが)最終的には、木はランダムフォレストに置き換えられますパフォーマンスのためのクイックウィンであるかもしれませんが、その...
サンディープ・シンと組んでGen AIの次の大きなトレンドを探る
このLeading with Dataセッションでは、Beans.aiのHead of Applied AIであるSandeep Singhの第一手の経験が披露されています。彼は総合的なワークショップから生成AIエンジニアの形成、コンピュータビジョンと自然言語処理(NLP)の組み合わせの変革的なポテンシャルまで、自身の旅からの洞察を共有しています。この会話は、AIが抱えるエキサイティングな未来を明らかにします。 Sandeep Singhとの会話からの重要な洞察 インドのAIエコシステムは、ベイエリアの研究に焦点を当てたAIの景色とは異なり、迅速な採用と製品化に特異な立場にあります。 Data Hack Summitのワークショップは、生成AIエンジニアへの変換のための稀なエンドツーエンドの体験を提供します。 コンピュータビジョンとNLPの融合は、アクセシビリティとデジタルコンテンツのインタラクションの分野でAIの次のブレークスルーです。 プロジェクトを一貫して構築し、学習プロセスを文書化することは、AI初心者にとって重要であり、理論よりも実践的な経験が強調されます。 エンタープライズソフトウェアにおけるAIの将来は、コードの記述から抽象的な概念の定義へとシフトする可能性があり、主要なプログラミング言語として英語が使用されるかもしれません。 Leading with Dataセッションに参加し、AIおよびデータサイエンスのリーダーとの洞察に満ちた議論に没頭しましょう! では、Sandeep Singhに対して行われた質問と彼の回答を見てみましょう。 バンガロールでのData Hack Summitの体験はいかがでしたか?…
新しいOpenAIの理事会を解説
「AIおよびテクノロジー分野に波紋を広げた驚くべき出来事の中で、人工知能分野のリーディングカンパニーであるOpenAIが最近、重要なリーダーシップの変革を遂げましたSam Altman氏がCEOの地位に劇的に復帰し、それに伴って役員の再編成が行われるなど、これらの変化によって[…]」
「Elasticsearchのマスター:パワフルな検索と正確性のための初心者ガイドーPart 1」
· 前回から始める、Elasticsearch ⊛ サンプルデータセット ⊛ ElasticSearchクエリの理解 ⊛ 応答の理解 ⊛ 基本的な検索クエリ · 語彙的検索 · 問題...
「OpenAI Dev Day 2023 創設者サム・オルトマンの基調講演からの4つの重要発表、見逃せません!」
「OpenAIによって初めて開催されたデベロッパーカンファレンスは、素晴らしい製品発表で満員御礼でしたさらに興味深いことに、これらの発表によって多くのAIスタートアップは完全に時代遅れになってしまいます…」
効率的にPythonコードを書く方法:初心者向けチュートリアル
「Pythonでスキルアップしたいプログラマーですか? よりエレガントかつPythonらしいコードを書くのに役立ついくつかのPythonの機能を学んでみましょう」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.