Learn more about Search Results 場所 - Page 129
- You may be interested
- 「GoogleのDeblur AI:画像をシャープにす...
- 「ジェネレーティブAIを正しくする責任は...
- このUCLAのAI研究によると、大規模な言語...
- 「3Dシーン表現の境界を破る:新しいAIテ...
- PyTorch Lightningを使用して、ゼロからCN...
- 再抽出を用いた統計的実験
- ChatGPT コードインタプリター:私が何時...
- このAI論文は、「MATLABER:マテリアルを...
- 「教師あり学習の理論と概要の理解」
- 画像認識におけるディープラーニング:技...
- 「AIプログラムがイスラエルの男性の命を...
- 機械革命の始まりですか?
- MIT研究者が高度なニューラルネットワーク...
- 「ワードエンベディング:より良い回答の...
- 「LangchainとOllamaを使用したPDFチャッ...
ビジュアライゼーションのためにデータを準備する方法
次のデータ可視化プロジェクトを始めたいですか? まずはデータクリーニングに親しんで始めましょうデータクリーニングは、どんなデータパイプラインにおいても重要なステップであり、生の「汚れた」データを変換します...
グラフの復活:グラフの年ニュースレター2023年春
今日のナレッジグラフ、グラフデータベース、グラフアナリティクス、グラフAIの現在地と今後の方向性に関するニュースと分析を見つける
UCバークレーとMeta AIの研究者らは、トラックレット上で3Dポーズとコンテキスト化された外観を融合することにより、ラグランジュアクション認識モデルを提案しています
流体力学では、ラグランジュ流体場形式とオイラー流体場形式を区別することが慣習となっています。Wikipediaによると、「流体場のラグランジュ仕様は、観察者が離散的な流体粒子を空間および時間を通じて流れるように追跡する方法であり、粒子の経路線は時間の経過に伴ってその位置をグラフ化することで決定できます。これは、舟に座って川を漂っているようなものです。一方、流体場のオイラー仕様は、時間が経過するにつれて流体が流れる空間の場所に特に重点を置いて流体運動を分析する方法です。川岸に立って流れる水を観察すると、これを想像することができます。 これらの考え方は、人間の行動の記録をどのように調べるかを理解する上で重要です。オイラーの視点によると、彼らは(x、y)または(x、y、z)など、特定の場所の特徴ベクトルに注目し、その場所で空間で静止したまま時間の経過を考慮します。一方、ラグランジュの視点によると、人間などのエンティティを時空間を超えて追跡し、関連する特徴ベクトルを追跡します。たとえば、活動認識の以前の研究は、しばしばラグランジュの視点を採用しました。ただし、3D時空間畳み込みに基づくニューラルネットワークの発展により、SlowFast Networksのような最先端の方法では、オイラーの視点が一般的になりました。トランスフォーマー・システムへの切り替え後も、オイラー視点が維持されています。 これは、トランスフォーマーのトークナイズ化プロセス中に、「ビデオ分析における単語の相当物は何であるべきか」という問いを再検討する機会を提供してくれます。Dosovitskiyらは、画像パッチを良い選択肢として推奨し、その概念をビデオに拡張すると、時空立方体がビデオに適している可能性があります。しかし、彼らは自分たちの研究で、人間の行動を調べる際にはラグランジュの視点を採用しています。これにより、彼らはエンティティの時間的な経過を考えています。この場合、エンティティは高レベルなものであるか、人間のようなもの、あるいはピクセルやパッチのような低レベルなものであるかもしれません。彼らは、「人間としてのエンティティ」のレベルで機能することを選択しました。これは、人間の行動を理解することに興味があるためです。 これを行うために、彼らは、人物の動きをビデオで分析し、それを利用して彼らの活動を識別する技術を使用しています。最近リリースされた3D追跡技術PHALPとHMR 2.0を使用してこれらの軌跡を取得することができます。図1は、PHALPが個人のトラックを3Dに昇格させることでビデオから人のトラックを回収する方法を示しています。彼らはこれらの人物の3Dポーズと位置を基本要素として各トークンを構築することができます。これにより、モデル(この場合、トランスフォーマー)は、身元、3D姿勢、3D位置にアクセスできる様々な個人に属するトークンを入力として受け取る柔軟なシステムを構築することができます。シナリオ内の人物の3D位置を使用することで、人間の相互作用について学ぶことができます。 トークナイズベースのモデルは、ポーズデータにアクセスできる旧来のベースラインを上回り、3Dトラッキングを使用することができます。人物の位置の進化は強力な信号ですが、一部の活動には周囲の環境や人物の見た目に関する追加の背景知識が必要です。そのため、立場と直接的に派生した人物とシーンの外観に関するデータを組み合わせることが重要です。これを行うために、彼らは、ラグランジュの枠組みで、人物と環境の文脈化された外観に基づく補足データを供給するために、最先端のアクション認識モデルを追加で使用しています。彼らは、各トラックのルートを激しく実行することで、各トラック周辺の文脈化された外観属性を記録します。 図1は、次のようになります。与えられた映画で、まず追跡アルゴリズム(PHALPなど)を使用して各個人を追跡します。次に、トラック内の各検出をトークナイズ化して、人間中心のベクトル(姿勢や外観など)を表現します。人物の推定3D位置とSMPLパラメータを使用して、彼らの3Dポーズを表現し、MViT(MaskFeatで事前学習された)特性を使用して、文脈化された外観を表現します。そして、レールを利用して、トランスフォーマー・ネットワークをトレーニングしてアクションを予測します。青い人物は2番目のフレームで検出されていません。これらの場所では、欠落した検出を置き換えるためにマスクトークンが渡されます。 彼らのトークンは、アクション認識バックボーンによって処理され、個人の3Dスタンスに関する明示的な情報と、ピクセルからの高頻度の外観データを含んでいます。AVA v2.2の難しいデータセットでは、彼らのシステム全体が先行研究を2.8 mAPの大幅なマージンで超えています。全体的に、彼らの主要な貢献は、人間の動きを理解するためにトラッキングと3Dポーズの利点を強調する方法論の導入です。UCバークレーとMeta AIの研究者は、人々のトラックを使用して彼らの行動を予測するLagrangian Action Recognition with Tracking(LART)メソッドを提案しています。彼らのベースラインバージョンは、トラックレスの軌跡とビデオ内の人物の3Dポーズ表現を使用した以前のベースラインを上回っています。さらに、ビデオからの外観とコンテキストを単独で考慮する標準的なベースラインが、提案されたLagrangian視点のアクション検出と簡単に統合でき、主流のパラダイムを大幅に改善できることを示しています。
AIの汎化ギャップに対処:ロンドン大学の研究者たちは、Spawriousという画像分類ベンチマークスイートを提案しましたこのスイートには、クラスと背景の間に偽の相関が含まれます
人工知能の人気が高まるにつれ、新しいモデルがほぼ毎日リリースされています。これらのモデルには新しい機能や問題解決能力があります。近年、研究者たちは、AIモデルの抵抗力を強化し、スパリアスフィーチャーへの依存度を減らすアプローチを考えることに重点を置いています。自動運転車や自律型キッチンロボットの例を考えると、彼らは彼らが訓練データから学習したものと大きく異なるシナリオで動作する際に生じる課題のためにまだ広く展開されていません。 多くの研究がスパリアス相関の問題を調査し、モデルのパフォーマンスに対するその負の影響を軽減する方法を提案しています。ImageNetなどのよく知られたデータセットで訓練された分類器は、クラスラベルと相関があるが、それらを予測するわけではない背景データに依存していることが示されています。SCの問題に対処する方法の開発に進展はあったものの、既存のベンチマークの制限に対処する必要があります。現在のWaterbirdsやCelebA hair color benchmarksなどのベンチマークには制限があり、そのうちの1つは、現実では多対多(M2M)のスパリアス相関がより一般的であり、クラスと背景のグループを含む単純な1対1(O2O)スパリアス相関に焦点を当てていることです。 最近、ロンドン大学カレッジの研究チームが、クラスと背景の間にスパリアス相関が含まれる画像分類ベンチマークスイートであるSpawriousデータセットを導入しました。それは1対1(O2O)および多対多(M2M)のスパリアス相関の両方を含み、3つの難易度レベル(Easy、VoAGI、Hard)に分類されています。データセットは、テキストから画像を生成するモデルを使用して生成された約152,000の高品質の写真リアルな画像で構成されており、画像キャプションモデルを使用して不適切な画像をフィルタリングし、データセットの品質と関連性を確保しています。 Spawriousデータセットの評価により、現在の最先端のグループ頑健性アプローチに対してHard-splitsなどの課題が課せられ、ImageNetで事前学習されたResNet50モデルを使用してもテストされた方法のいずれも70%以上の正確性を達成できなかったことが示されました。チームは、分類器が間違った分類を行った際に背景に依存していることを見て、モデルのパフォーマンスの短所が引き起こされたと説明しています。これは、スパリアスデータの弱点を成功裏にテストし、分類器の弱点を明らかにすることができたことを示しています。 O2OとM2Mベンチマークの違いを説明するために、チームは、夏に訓練データを収集する例を使用しました。それは、2つの異なる場所から2つの動物種のグループで構成され、各動物グループが特定の背景グループに関連付けられているものです。しかし、季節が変わり、動物が移動すると、グループは場所を交換し、動物グループと背景の間のスパリアス相関が1対1で一致することはできなくなります。これは、M2Mスパリアス相関の複雑な関係と相互依存関係を捉える必要性を強調しています。 Spawriousは、OOD、ドメイン汎化アルゴリズムにおける有望なベンチマークスイートであり、スパリアスフィーチャーの存在下でモデルの評価と改善を行うためにも使用できます。
テキストから画像合成を革新する:UCバークレーの研究者たちは、強化された空間的および常識的推論のために、大規模言語モデルを2段階の生成プロセスで利用しています
テキストから画像を生成する最近の進歩により、高度に現実的で多様な画像を合成できる拡散モデルが登場しました。しかし、その印象的な能力にもかかわらず、Stable Diffusionのような拡散モデルは、空間的または常識的推論を必要とするプロンプトに支援が必要であり、生成された画像に不正確さが生じることがあります。 この課題に対処するため、UCバークレーとUCSFの研究チームは、テキストから画像を生成する際のプロンプト理解を向上させる革新的なLMD接地拡散(LMD)手法を提案しました。彼らは、否定、数値、属性割り当て、空間関係を含むシナリオを特定し、Stable Diffusionに比べてLMDの短所を明らかにしました。 研究者たちは、大規模言語モデル(LLM)と拡散モデルのトレーニングにかかるコストと時間を避けるコスト効率の高い解決策を採用しました。彼らは、オフ・ザ・シェルフの凍結LLMを拡散モデルに統合し、拡散モデルにより強化された空間的および常識的推論能力を提供する2段階の生成プロセスを実現しました。 第1段階では、LLMはコンテキスト学習を通じてテキストによるレイアウトジェネレーターとして機能するように適応されます。画像のプロンプトが与えられると、LLMはバウンディングボックスとそれに対応する説明から構成されるシーンレイアウトを生成します。第2段階では、生成されたレイアウトによって拡散モデルが誘導され、画像を生成します。両段階で、LLMまたは拡散モデルのパラメータ最適化なしに凍結された事前トレーニングモデルが使用されます。 LMDには、プロンプト理解を改善する以外にも、いくつかの利点があります。ダイアログベースのマルチラウンドシーン指定を可能にし、ユーザーが各プロンプトに対して追加の説明や修正を提供できるようにします。さらに、LMDは、基礎となる拡散モデルでサポートされていない言語のプロンプトを処理できます。マルチラウンドのダイアログをサポートするLLMを組み込むことで、初期のレイアウト生成後にLLMにクエリを送信し、追加の画像生成のための更新されたレイアウトを受け取ることができます。これにより、オブジェクトの追加や場所や説明の変更などの要求が容易になります。 さらに、LMDは、コンテキスト学習中に英語のレイアウトと背景説明とともに非英語のプロンプトの例を提供することで、非英語のプロンプトを受け入れることができます。これにより、与えられた言語に対応するサポートがない場合でも、LMDは英語の説明を持つレイアウトを生成できます。 研究者たちは、LMDが利用する基本的な拡散モデルであるStable Diffusion 2.1と比較することで、LMDの優越性を検証しました。より包括的な評価とさらなる比較については、彼らの研究を探索するように読者を招待しています。 要約すると、LMDは、空間的または常識的推論を必要とするプロンプトに正確に従うための拡散モデルの制限に対処する革新的なアプローチを提供します。凍結LLMを組み込み、2段階の生成プロセスを採用することで、LMDはテキストから画像を生成するタスクにおけるプロンプト理解を大幅に強化します。また、ダイアログベースのシーン指定やサポートされていない言語のプロンプトの処理など、追加の機能を提供します。研究チームの業績は、オフ・ザ・シェルフの凍結モデルを統合することで、合成された画像の正確性と多様性を向上させるための新しい可能性を開くものです。
データエンジニアが本当にやっていること?
データ主導の世界では、データエンジニアのような裏方のヒーローたちは、スムーズなデータフローを確保するために重要な役割を果たしています。突然不適切なおすすめを受け取ったオンラインショッパーを想像してみてください。データエンジニアは問題を調査し、電子商取引プラットフォームのデータファンネルに欠陥があることを特定し、スムーズなデータパイプラインを迅速に実装します。データサイエンティストやアナリストに注目が集まる一方で、データエンジニアの執念深い努力によって、組織内の情報に基づく意思決定に必要なアクセスしやすく、よく準備されたデータが保証されています。データエンジニアは具体的に何をするのでしょうか?彼らはどのようにビジネスの成功に貢献しているのでしょうか?彼らの世界に飛び込んで、データエンジニアの職務内容、役割、責任、そしてあなたの燃えるような疑問に答えましょう。 データエンジニアの職務内容 データエンジニアは、生データを貴重な洞察に変換し、ビジネスアナリストやデータサイエンティストが活用できるように、データを収集、管理、変換することで重要な役割を果たします。彼らの主な目的は、データのアクセシビリティを確保し、企業がパフォーマンスを最適化し、情報に基づいた意思決定を行うことを可能にすることです。彼らはアルゴリズムを設計し、統計を分析し、ビジネス目標に応じてデータシステムを整合させ、効率を最大化します。データエンジニアには強力な分析スキル、多様なソースからデータを統合する能力、プログラミング言語の熟練度、および機械学習技術の知識が必要です。データエンジニアの職務内容は広範であり、組織のデータ主導の成功に貢献する多くの役割と責任を包括しています。 データエンジニアの役割と責任 データエンジニアの役割と責任は、要件に基づいて会社によって異なる場合があります。ただし、一般的なデータエンジニアの責任には、以下が含まれます: 完璧なデータパイプライン設計の開発および維持。 手動操作の自動化、データ配信の改善、スケーラビリティの向上のためのインフラ再設計など、内部プロセスの改善を特定し、計画し、実行する。 SQLおよびAWSビッグデータ技術を利用して、幅広いデータソースからの効果的なデータ抽出、変換、およびロードに必要なインフラの作成。 機能的および非機能的なビジネス目標を満たす膨大で複雑なデータセットの作成。 データファンネルを利用した分析ソリューションの構築により、新しい顧客獲得、業務効率改善、およびその他の重要な企業パフォーマンス指標に対する具体的な洞察を提供する。 エグゼクティブ、プロダクト、データ、およびデザインチームなどのステークホルダーがデータインフラ関連の課題に直面した場合に、彼らのデータインフラ要件を満たすために支援する。 複数のデータセンターやAWSリージョンを利用することで、国際境界を越えたデータのプライバシーとセキュリティを維持する。 データおよび分析プロフェッショナルと協力して、データシステムの運用を改善する。 さらに読む:ジョブ比較-データサイエンティストvsデータエンジニアvs統計学者 データエンジニアに必要なスキル データエンジニアになりたい場合、ある程度の技術的およびソフトスキルに精通している必要があります。 技術的スキル 自分たちの役割で優れた成果を出すために、データエンジニアは以下の技術的スキルを持っている必要があります。 コーディング Python、Java、SQL、NoSQL、Ruby、Perl、MatLab、R、SAS、C and C++、Scala、Golangなどのプログラミング言語の熟練度は、ほとんどの企業で高く評価されます。コーディングの堅牢な基盤は、データエンジニアのポジションにおいて不可欠です。 オペレーティングシステムの理解 データエンジニアは、Microsoft…
私の博士号入学への道 – 人工知能
大学の出願書類を取り組んで、日々をカウントダウンして過ごした6ヶ月間の後、2023年秋に人工知能の博士号を取得することになりました以下の内容をまとめてみました…
チャットGPTの潜在能力を引き出すためのプロンプトエンジニアリングのマスタリング
プロンプトエンジニアリングは、ChatGPTやその他の大規模言語モデルのおかげで、風のように私たちの生活の一部にすぐになりました完全に新しい分野ではありませんが、現在...
紛争のトレンドとパターンの探索:マニプールのACLEDデータ分析
はじめに データ分析と可視化は、複雑なデータセットを理解し、洞察を効果的に伝えるための強力なツールです。この現実世界の紛争データを深く掘り下げる没入型探索では、紛争の厳しい現実と複雑さに深く踏み込みます。焦点は、長期にわたる暴力と不安定状態によって悲惨な状況に陥ったインド北東部のマニプール州にあります。私たちは、武装紛争ロケーション&イベントデータプロジェクト(ACLED)データセット[1]を使用し、紛争の多面的な性質を明らかにするための詳細なデータ分析の旅に出ます。 学習目標 ACLEDデータセットのデータ分析技術に熟達する。 効果的なデータ可視化のスキルを開発する。 脆弱な人口に対する暴力の影響を理解する。 紛争の時間的および空間的な側面に関する洞察を得る。 人道的ニーズに対処するための根拠に基づくアプローチを支援する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 利害の衝突 このブログで提示された分析と解釈に責任を持つ特定の組織や団体はありません。目的は、紛争分析におけるデータサイエンスの潜在力を紹介することです。さらに、これらの調査結果には個人的な利益や偏見が含まれておらず、紛争のダイナミクスを客観的に理解するアプローチが確保されています。データ駆動型の方法を促進し、紛争分析に関する広範な議論に情報を提供するために、積極的に利用することを推奨します。 実装 なぜACLEDデータセットを使用するのか? ACLEDデータセットを活用することで、データサイエンス技術の力を活用することができます。これにより、マニプール州の状況を理解するだけでなく、暴力に関連する人道的側面にも光を当てることができます。ACLEDコードブックは、このデータセット[2]で使用されるコーディングスキームと変数に関する詳細な情報を提供する包括的な参考資料です。 ACLEDの重要性は、共感的なデータ分析にあります。これにより、マニプール州の暴力に関する理解が深まり、人道的ニーズが明らかにされ、暴力の解決と軽減に貢献します。これにより、影響を受けるコミュニティに平和で包摂的な未来が促進されます。 このデータ駆動型の分析により、貴重な洞察力を得るだけでなく、マニプール州の暴力の人的コストにも光が当てられます。ACLEDデータを精査することで、市民人口、強制的移動、必要なサービスへのアクセスなど、地域で直面する人道的現実の包括的な描写が可能になります。 紛争のイベント まず、ACLEDデータセットを使用して、マニプール州の紛争のイベントを調査します。以下のコードスニペットは、インドのACLEDデータセットを読み込み、マニプール州のデータをフィルタリングして、形状が(行数、列数)のフィルタリングされたデータセットを生成します。フィルタリングされたデータの形状を出力します。 import pandas as pd # ACLEDデータをダウンロードして国別のcsvをインポートする…
あなたの次の夢の役割(2023年)を見つけるのに役立つ、最高のAIツール15選
Resumaker.ai Resumaker.aiは、数分で履歴書を作成するのを支援するウェブサイトです。ポータルは、いくつかのカスタマイズ可能なデザイナー製履歴書テンプレートと直感的なツールを提供して、夢の仕事に就くのを手助けします。他の履歴書ビルダーとは異なり、Resumaker.aiの人工知能(AI)エンジンは、ユーザーのためにデータを自動的に完了・入力することで、履歴書作成プロセスを簡素化します。Resumaker.aiは、SSL暗号化などの対策を講じて、ユーザーデータを不正アクセスから保護します。ツールのライティングガイドとレコメンデーションを使用して、競合から目立つ履歴書をデザインすることができます。ユーザーは、投稿されたポジションの要件を反映させ、自己紹介を行い、自分の資格に関する主張を裏付けるために数字を活用することができます。 Interviewsby.ai 人工知能によって駆動されるプラットフォームであるInterviewsby.aiを使用することで、求職者はインタビューに備えることができます。ユーザーに合わせた模擬面接中に、人間の言葉を認識・解釈することができる言語モデルであるChatGPTがリアルタイムのフィードバックを提供します。希望する雇用に関する情報を入力することにより、アプリケーションはユーザーに適切で現実的なインタビューの質問を生成することができます。質問を作成する機能により、ユーザーが古くなったり関係のない素材でトレーニングする可能性がなくなります。Interviewsby.aiを使用することで、ユーザーはコントロールされた環境で面接スキルを磨き、自分の強みと弱みに注目した具体的なフィードバックを即座に受けることができます。 Existential ユーザーの興味、才能、価値観を評価することで、AIにより駆動される職業探索ツールであるExistentialは、ユーザーのプロフェッショナルな道筋について具体的な提言を行います。目的は、ユーザーにとって刺激的で挑戦的で満足のいく職業を示唆することです。アプリケーションには簡単な発見プロセスがあり、理想的な仕事に関する特定の質問に答えた後、プログラムはユーザーの興味に最も合った推奨事項を提供します。コミットする前に、ユーザーはこれらの選択肢について詳しく学び、自分の目的に合うかどうかを確認することができます。Existentialは、個人が自分の運命を形作り、仕事に意味を見出すことを目指しています。 Jobscan 求職者は、人工知能(AI)によって駆動されるJobscan ATS Resume CheckerおよびJob Search Toolsを使用することで、面接を受ける可能性を高めることができます。プログラムは、求人情報と応募者の履歴書を分析し、関連する資格を分離するための独自の人工知能アルゴリズムを使用します。応募者の履歴書を分析した後、プログラムは、応募者の強みと改善の余地がある部分を詳細に説明したマッチ率レポートを生成します。Jobscan ATS Resume Checkerの助けを借りて、あなたの履歴書をApplicant Tracking Systems(ATS)に最適化し、注目される可能性を高めることができます。 Aragon 人工知能(AI)によって駆動されるプログラムであるAragon Professional Headshotsは、写真家に行かずに、ヘアメイクに時間をかけずに、修正を待たずに、洗練されたヘッドショットを撮影できるようにするツールです。ユーザーは10枚のセルフィーをアップロードし、ツールは瞬時に40枚の高精細写真を返します。さらに、アプリケーションは、AES256でデータを暗号化し、SOC 2およびISO 27001の認定を取得したサービスプロバイダーにのみデータを保存することにより、ユーザーのプライバシーを保護します。ただし、18歳未満の人は利用しないでください。これは利用規約の違反となります。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.