Learn more about Search Results 18 - Page 124

機械学習によるストレス検出の洞察を開示

イントロダクション ストレスとは、身体や心が要求や挑戦的な状況に対して自然に反応することです。外部の圧力や内部の思考や感情に対する身体の反応です。仕事に関するプレッシャーや財政的な困難、人間関係の問題、健康上の問題、または重要な人生の出来事など、様々な要因によってストレスが引き起こされることがあります。データサイエンスと機械学習によるストレス検知インサイトは、個人や集団のストレスレベルを予測することを目的としています。生理学的な測定、行動データ、環境要因などの様々なデータソースを分析することで、予測モデルはストレスに関連するパターンやリスク要因を特定することができます。 この予防的アプローチにより、タイムリーな介入と適切なサポートが可能になります。ストレス予測は、健康管理において早期発見と個別化介入、職場環境の最適化に役立ちます。また、公衆衛生プログラムや政策決定にも貢献します。ストレスを予測する能力により、これらのモデルは個人やコミュニティの健康増進と回復力の向上に貢献する貴重な情報を提供します。 この記事は、データサイエンスブログマラソンの一部として公開されました。 機械学習を用いたストレス検知の概要 機械学習を用いたストレス検知は、データの収集、クリーニング、前処理を含みます。特徴量エンジニアリング技術を適用して、ストレスに関連するパターンを捉えることができる意味のある情報を抽出したり、新しい特徴を作成したりすることができます。これには、統計的な測定、周波数領域解析、または時間系列解析などが含まれ、ストレスの生理学的または行動的指標を捉えることができます。関連する特徴量を抽出またはエンジニアリングすることで、パフォーマンスを向上させることができます。 研究者は、ロジスティック回帰、SVM、決定木、ランダムフォレスト、またはニューラルネットワークなどの機械学習モデルを、ストレスレベルを分類するためのラベル付きデータを使用してトレーニングします。彼らは、正解率、適合率、再現率、F1スコアなどの指標を使用してモデルのパフォーマンスを評価します。トレーニングされたモデルを実世界のアプリケーションに統合することで、リアルタイムのストレス監視が可能になります。継続的なモニタリング、更新、およびユーザーフィードバックは、精度向上に重要です。 ストレスに関連する個人情報の扱いには、倫理的な問題やプライバシーの懸念を考慮することが重要です。個人のプライバシーや権利を保護するために、適切なインフォームドコンセント、データの匿名化、セキュアなデータストレージ手順に従う必要があります。倫理的な考慮事項、プライバシー、およびデータセキュリティは、全体のプロセスにおいて重要です。機械学習に基づくストレス検知は、早期介入、個別化ストレス管理、および健康増進に役立ちます。 データの説明 「ストレス」データセットには、ストレスレベルに関する情報が含まれています。データセットの特定の構造や列を持たない場合でも、パーセンタイルのためのデータ説明の一般的な概要を提供できます。 データセットには、年齢、血圧、心拍数、またはスケールで測定されたストレスレベルなど、数量的な測定を表す数値変数が含まれる場合があります。また、性別、職業カテゴリ、または異なるカテゴリ(低、VoAGI、高)に分類されたストレスレベルなど、定性的な特徴を表すカテゴリカル変数も含まれる場合があります。 # Array import numpy as np # Dataframe import pandas as pd #Visualization…

オムニバースへ:マーベラスデザイナーのためのUniversal Scene Descriptionサポートにより、ユーザーは3Dキャラクターのためのデジタルアセットや衣服をカスタマイズできます

注記:この記事は、アーティスト、開発者、企業が、Universal Scene DescriptionおよびNVIDIA Omniverseの最新の進歩を利用して、ワークフローを変換する方法に焦点を当てた月刊シリーズであるInto the Omniverseの一部です。 魚のヒレをアニメーションさせたり、デジタルキャラクターのおしゃれな衣装を作ったりする場合でも、クリエイターは、Marvelous Designerソフトウェアを利用して、3Dワークフローのためのアセット、衣服、その他の素材を作成および調整することができます。 Marvelous Designerは最近、Omniverse Connectorを発売しました。これは、そのソフトウェアとNVIDIA Omniverseの間で行われる協働ワークフローを強化するツールであり、3Dツールおよびアプリケーションを接続および構築するための開発プラットフォームであるNVIDIA Omniverseとの連携を図っています。 Connectorは、3Dツール間で共通の言語であるUniversal Scene DescriptionフレームワークであるOpenUSDをサポートするため、設計プロセスを大幅にスピードアップし、簡易化することができます。 通常のコンピューターグラフィックスパイプラインでは、アーティストは、作品を完成させるためにソフトウェア間を行き来する必要があります。新しいOmniverse Connectorにより、Marvelous DesignerのOpenUSDを介した改良されたインポートおよびエクスポート機能により、クリエイターは時間を節約することができます。 最近のライブストリームで、3DデザイナーのBrandon Yuは、新しいConnectorとOpenUSDを使用して、協働ワークフローを改善し、生産性を向上させ、創造的な可能性を拡大し、デザインプロセスを合理化する方法を共有しました。 MH Tutorials YouTubeチャンネルで15万人以上の登録者を持つMike…

あなた全体に装着可能なロボットアシスタント

メリーランド大学の研究者が開発したCalico補助ロボットは、ユーザーの衣服に装着でき、トラックに沿って走りながら様々なタスクを実行することができます

Rにおける二元配置分散分析

二元分散分析(Two-way ANOVA)は、二つのカテゴリカル変数が量的連続変数に与える同時効果を評価することができる統計的方法です二元分散分析は…

SparkとPlotly Dashを使用したインタラクティブで洞察力のあるダッシュボードの開発

クラウドデータレイクは、すべてのタイプ(構造化および非構造化)のデータのスケーラブルで低コストなリポジトリとして、エンタープライズ組織に広く採用されています分析には多くの課題があります...

予測の作成:Pythonにおける線形回帰の初心者ガイド

最も人気のある機械学習アルゴリズムである線形回帰について、その数学的直感とPythonによる実装をすべて学びましょう

PyTorchを使った転移学習の実践ガイド

この記事では、転移学習と呼ばれる技術を使用して、カスタム分類タスクに事前学習済みモデルを適応する方法を学びますPyTorchを使用した画像分類タスクで、Vgg16、ResNet50、およびResNet152の3つの事前学習済みモデルで転移学習を比較します

バードの未来展望:よりグローバルで、よりビジュアル的で、より統合されたもの

「Bardのウェイトリストを終了し、より多くの地域をサポートするようになり、画像を導入し、パートナーアプリと連携することができるようになりました」

単一モダリティとの友情は終わりました – 今やマルチモダリティが私の親友です:CoDiは、合成可能な拡散による任意から任意への生成を実現できるAIモデルです

ジェネレーティブAIは、今ではほぼ毎日聞く用語です。私はジェネレーティブAIに関する論文をどれだけ読んでまとめたか覚えていません。彼らは印象的で、彼らがすることは非現実的で魔法のようであり、多くのアプリケーションで使用できます。テキストプロンプトを使用するだけで、画像、動画、音声などを生成できます。 近年のジェネレーティブAIモデルの大幅な進歩により、以前は不可能と考えられていたユースケースが可能になりました。テキストから画像へのモデルで始まり、信じられないほど素晴らしい結果が得られたことがわかった後、複数のモダリティを扱うことができるAIモデルの需要が高まりました。 最近は、任意の入力の組み合わせ(例:テキスト+音声)を取り、様々な出力の組み合わせ(例:ビデオ+音声)を生成できるモデルの需要が急増しています。これを対処するためにいくつかのモデルが提案されていますが、これらのモデルは、共存し相互作用する複数のモダリティを含む現実世界のアプリケーションに関して制限があります。 モダリティ固有の生成モデルを多段的なプロセスでつなげることは可能ですが、各ステップの生成力は本質的に限定されるため、手間がかかり、遅いアプローチとなります。また、独立に生成された単一モダルストリームは、組み合わせるときに一貫性や整合性が欠けることがあり、後処理の同期が困難になる場合があります。 任意の入力モダリティの混合を処理し、任意の出力の組み合わせを柔軟に生成するためのモデルをトレーニングするには、膨大な計算およびデータ要件が必要です。可能な入力-出力の組み合わせの数は指数関数的に増加し、多数のモダリティグループに対して整列したトレーニングデータはまれまたは存在しないためです。 ここで、この課題に取り組むために提案されたCoDiというモデルを紹介しましょう。 CoDiは、任意のモダリティの任意の組み合わせを同時に処理および生成することを可能にする新しいニューラルアーキテクチャです。 CoDiの概要。出典:https://arxiv.org/pdf/2305.11846.pdf CoDi は、入力条件付けおよび生成拡散ステップの両方で複数のモダリティを整列させることを提案しています。さらに、対照的な学習のための「ブリッジングアライメント」戦略を導入し、線形数のトレーニング目標で指数関数的な入力-出力の組み合わせを効率的にモデル化できるようにしています。 CoDi の主要なイノベーションは、潜在的な拡散モデル(LDM)、多モダル条件付けメカニズム、およびクロスアテンションモジュールの組み合わせを利用して、任意の-to-任意の生成を処理することができる能力にあります。各モダリティ用に別々のLDMをトレーニングし、入力モダリティを共有特徴空間に射影することで、CoDi は、このような設定の直接的なトレーニングなしで、任意のモダリティまたはモダリティの組み合わせを生成できます。 CoDiの開発には、包括的なモデル設計と多様なデータリソースでのトレーニングが必要です。最初に、テキスト、画像、動画、音声などの各モダリティに対して潜在的な拡散モデル(LDM)をトレーニングします。これらのモデルは独立して並行してトレーニングでき、モダリティに固有のトレーニングデータを使用して、卓越した単一モダリティ生成品質を確保します。音声+言語のプロンプトを使用して画像を生成する場合の条件付きクロスモダリティ生成では、入力モダリティを共有の特徴空間に射影し、出力LDMは入力特徴の組み合わせに注意を払います。この多モダル条件付けメカニズムにより、拡散モデルは直接的なトレーニングなしで、任意のモダリティまたはモダリティの組み合わせを処理できるようになります。 CoDiモデルの概要。出典:https://arxiv.org/pdf/2305.11846.pdf トレーニングの第2ステージでは、CoDiは、任意の出力モダリティの任意の組み合わせを同時に生成する多対多の生成戦略を処理します。これは、各ディフューザーにクロスアテンションモジュールを追加し、環境エンコーダーを追加して、異なるLDMの潜在変数を共有潜在空間に投影することによって実現されます。このシームレスな生成能力により、CoDiは、すべての可能な生成組み合わせでトレーニングすることなく、任意のモダリティのグループを生成できるため、トレーニング目標の数を指数関数から線形関数に減らすことができます。 (※以下、原文のHTMLコードを保持します) In the second stage of training, CoDi…

アルゴリズム取引と金融におけるAIにおける知的財産権法の理解

金融業界は、特定の期間の要求に最も適したより効率的で効果的なアプローチを受け入れるために常に変化していますアルゴリズム取引とAIは、取引と金融に進出する最新の技術であり、効率性と正確性の面で金融の景観を変革することになっています... アルゴリズム取引とAIにおける知的財産法の理解(英語原文のタイトル)

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us