Learn more about Search Results AI  - Page 123

人間の注意力を予測するモデルを通じて、心地よいユーザーエクスペリエンスを実現する

Google Researchのシニアリサーチサイエンティスト、Junfeng He氏とスタッフリサーチサイエンティスト、Kai Kohlhoff氏による記事です。 人間は、驚くほど多くの情報を取り入れる能力を持っています(網膜に入る情報は秒間約10 10ビット)。そして、タスクに関連し、興味深い領域に選択的に注目し、さらに処理する能力を持っています(例:記憶、理解、行動)。人間の注意(その結果として得られるものはしばしば注目モデルと呼ばれます)をモデル化することは、神経科学、心理学、人間コンピュータインタラクション(HCI)、コンピュータビジョンの分野で興味を持たれてきました。どの領域でも、どの領域でも、注目が集まる可能性が高い領域を予測する能力には、グラフィックス、写真、画像圧縮および処理、視覚品質の測定など、多数の重要な応用があります。 以前、機械学習とスマートフォンベースの注視推定を使用して、以前は1台あたり3万ドルにも及ぶ専門的なハードウェアが必要だった視線移動の研究を加速する可能性について説明しました。関連する研究には、「Look to Speak」というアクセシビリティニーズ(ALSのある人など)を持つユーザーが目でコミュニケーションするのを支援するものと、「Differentially private heatmaps」という、ユーザーのプライバシーを保護しながら注目のようなヒートマップを計算する技術が最近発表されました。 このブログでは、私たちはCVPR 2022からの1つの論文と、CVPR 2023での採用が決定したもう1つの論文、「Deep Saliency Prior for Reducing Visual Distraction」と「Learning from Unique Perspectives: User-aware…

Microsoft BingはNVIDIA Tritonを使用して広告配信を高速化

Jiusheng Chen氏のチームは加速しました。 彼らは、NVIDIA Triton Inference ServerをNVIDIA A100 Tensor Core GPUで実行することにより、Microsoft Bingのユーザーに対してパーソナライズされた広告を7倍のスループットで低コストで提供しています。 主任ソフトウェアエンジニアリングマネージャーと彼のクルーにとって、これは素晴らしい成果です。 複雑なシステムの調整 Bingの広告サービスは、常に進化している数百のモデルを使用しています。それぞれは、10ミリ秒未満のリクエストに応答する必要があります。これは目に見えるのと同じくらい速いです。 最新のスピードアップは、AIモデルをより高速に実行するためにチームが提供した2つの革新に始まりました:BangとEL-Attention。 これらを併用することで、より少ない時間とコンピュータメモリでより多くの処理を行うための高度な技術が適用されます。モデルトレーニングは、効率化のためにAzure Machine Learningをベースにしています。 NVIDIA A100 MIGで飛行 次に、チームは、広告サービスをNVIDIA T4からA100 GPUにアップグレードしました。…

AIを学校に持ち込む:MITのアナント・アガルワルとの対話

NVIDIAのAI Podcastの最新エピソードで、edXの創設者であり2Uの最高プラットフォーム責任者であるAnant Agarwal氏は、オンライン教育の未来と、AIが学習体験を革新している方法について語りました。 大規模オープンオンラインコース(MOOC)の強力な提唱者であるAgarwal氏は、教育のアクセシビリティと品質の重要性について話しました。このMITの教授であり、著名なedtechの先駆者でもある彼は、edXプラットフォームでのChatGPTプラグインや、AIによる学習アシスタントであるedX Xpertの実装を強調しました。 関連記事 Jules Anh Tuan Nguyen氏が説明する、AIが切断された手の義手やビデオゲームを操作する方法 ミネソタ大学のポストドクトラル研究者が、義手を手の指の動きまで自分の意思で制御できるようにする取り組みについて説明しています。 OverjetのAi Wardah Inam氏が歯科医療にAIを導入することについて語る NVIDIA InceptionのメンバーであるOverjetは、AIを歯科医療に導入することを急いでいます。同社のCEOであるWardah Inam博士は、AIを利用して患者ケアを改善することについて説明しています。 ImmunaiのCTO兼共同創設者であるLuis Voloch氏が、深層学習を用いた新しい薬剤の開発について語る Immunaiの共同創設者兼最高技術責任者であるLuis Voloch氏は、機械学習とデータサイエンスのマインドセットで免疫システムの課題に取り組むことについて話しています。 AI Podcastを購読する:Amazon Musicで利用可能…

Rendered.aiは、合成データの生成にNVIDIA Omniverseを統合します

Rendered.aiは、プラットフォームとして提供される合成データ生成(SDG)により、開発者、データサイエンティスト、その他の人々のAIトレーニングを簡素化しています。 コンピュータビジョンAIモデルのトレーニングには、膨大で高品質で多様で偏りのないデータセットが必要です。これらを入手することは困難でコストがかかるため、AIの需要と供給の双方が増大する中で特に課題になります。 Rendered.aiのプラットフォームは、3Dシミュレーションから作成された物理的に正確な合成データを生成することにより、コンピュータビジョンモデルのトレーニングに役立ちます。 「実世界のデータは、AIモデルを一般化するために必要なすべてのシナリオとエッジケースをキャプチャできないことがあり、それがAIおよび機械学習エンジニアにとってキーとなるSDGの場所です」と、シアトルの郊外であるベルビューに拠点を置くRendered.aiの創設者兼CEOであるNathan Kundtzは述べています。 NVIDIA Inceptionプログラムの一員であるRendered.aiは、オンライントレーニング、ロボティクス、自律走行などの多くのアプリケーションにラベル付き合成データを生成することができるOmniverse Replicatorをプラットフォームに統合しました。 Omniverse Replicatorは、Universal Scene Description(「OpenUSD」)、Material Definition Language(MDL)、およびPhysXを含む3Dワークフローのオープンスタンダードに基づいて構築され、仮想世界の風景と植生のモデリング、衛星画像のオブジェクト検出、さらには人間の卵細胞の生存可能性のテストに使用されています。 Omniverse Replicatorを使用して生成された合成画像。Rendered.ai提供。 Rendered.aiは、Omniverse ReplicatorのRTXアクセラレーション機能を活用することで、レイトレーシング、ドメインランダム化、マルチセンサーシミュレーションなどの機能を利用することができます。コンピュータビジョンエンジニア、データサイエンティスト、およびその他のユーザーは、クラウド上の簡単なウェブインターフェイスを介して合成データを迅速かつ簡単に生成することができます。 「AIをトレーニングするために持つ必要があるデータは、実際にAIのパフォーマンスを支配する要因です」とKundtzは述べています。「Omniverse ReplicatorをRendered.aiに統合することで、さまざまな産業分野でより大きく、より優れたAIモデルをトレーニングするために合成データを利用するユーザーにとって、新しいレベルの簡単さと効率が実現されます。」 Rendered.aiは、カナダのバンクーバーで6月18日から22日まで開催されるコンピュータビジョンとパターン認識のカンファレンス(CVPR)で、Omniverse Replicatorとのプラットフォーム統合をデモンストレーションします。 クラウドでの合成データ生成 AWS…

映像作家のサラ・ディーチシーが今週の「NVIDIA Studio」でAIについて話します

編集部注:この投稿は、推薦されたアーティストを紹介し、クリエイティブなヒントやトリックを提供し、NVIDIA Studioテクノロジーがクリエイティブワークフローを改善する方法を示す当社の週刊In the NVIDIA Studioシリーズの一部です。また、新しいGeForce RTX 40シリーズGPUの機能、技術、リソース、およびコンテンツ作成を劇的に加速する方法について、深く掘り下げています。 自身のYouTubeチャンネルで9万人以上の購読者を持つ編集者兼映像作家のSara Dietschyは、テクノロジーとクリエイティブの交差点を探求するドキュメンタリーシリーズ、レビューやブログを制作しています。LA拠点のクリエイターは、今週In the NVIDIA Studioで彼女のAIパワードワークフローを紹介し、彼女の苗字に韻を踏む「peachy(素晴らしい)」と表現しました。 Dietschyは最近のビデオで、5つのAIツールがNVIDIA Studioテクノロジーによって可能になり、100時間以上の作業時間を節約できたことを説明しました。 「外出先で3Dレンダリングを行う場合、専用のNVIDIA RTX GPUは必須です。」- Sara Dietschy 彼女は、GeForce RTX 40シリーズGPUによって駆動されるノートパソコン上で実行されるこれらのツールが、非線形編集を煩雑にする手動作業を解決する実用的なアプローチを示しています。DaVinci Resolveソフトウェア内のAI Relighting、Video…

NVIDIAリサーチがCVPRで自律走行チャレンジとイノベーション賞を受賞

NVIDIAは、カナダのバンクーバーで開催されるComputer Vision and Pattern Recognition Conference(CVPR)において、自律走行開発の3D占有予測チャレンジで激戦を制し、優勝者として紹介されます。 この競技には、10地域にまたがる約150チームから400以上の投稿がありました。 3D占有予測とは、シーン内の各ボクセルの状態を予測するプロセスであり、つまり3Dバードアイビューグリッド上の各データポイントを指します。ボクセルは、フリー、占有、または不明として識別することができます。 安全で堅牢な自動運転システムの開発に不可欠な3D占有グリッド予測は、NVIDIA DRIVEプラットフォームによって可能になる最新の畳み込みニューラルネットワークやトランスフォーマーモデルを使用して、自律車両(AV)の計画および制御スタックに情報を提供します。 「NVIDIAの優勝ソリューションには、2つの重要なAVの進歩があります」と、NVIDIAの学習と知覚のシニアリサーチサイエンティストであるZhiding Yu氏は述べています。「優れたバードアイビュー認識を生み出す最新のモデル設計を実証することができます。さらに、3D占有予測での10億パラメーターまでのビジュアルファウンデーションモデルの効果と大規模な事前学習の有効性を示しています。」 自動運転の知覚は、画像内のオブジェクトや空きスペースなどの2Dタスクの処理から、複数の入力画像を使用して3Dで世界を理解することに進化しています。 これにより、複雑な交通シーン内のオブジェクトについて柔軟で精密な細かい表現が提供されるようになり、これはNVIDIAのAV応用研究および著名な科学者であるJose Alvarez氏によれば、「自律走行の安全感知要件を達成するために重要です。」 Yu氏は、NVIDIA Researchチームの受賞作品を、6月18日(日)10:20 a.m. PTに開催されるCVPRのEnd-to-End Autonomous Driving Workshopおよび6月19日(月)4:00 p.m. PTに開催されるVision-Centric…

Python開発のための12のVSCodeのヒントとトリック

VSCode からより少なくしてより多くを達成するための簡単なヒント

GPT-4は、誤情報を引き起こすプロンプトインジェクション攻撃に対して脆弱です

ChatGPTには、信頼性の低い事実を提供する可能性があるかもしれない漏れがあるかもしれません

ChatGPT、GPT-4、Bard、およびClaudeを検出するためのトップ10ツール

AIモデルによって生成された論文、研究論文、課題、ドキュメンテーション、およびブログを検出するためのトップ無料ツール

困難な就職市場を乗り切るために私が学んだ4つのキャリアレッスン

このブログでは、60日間の移民政策、レイオフ、健康問題などの困難な状況の中で、データサイエンスの役割を探している間に学んだ4つの貴重な教訓を共有しています私の希望は、最近のレイオフや移民の課題に直面している人々に洞察や指導を提供することです

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us