Learn more about Search Results gradio - Page 11
- You may be interested
- 「14%のコンバージョン率成長ストーリー...
- 枝刈り探索法で最適解を見つける
- 🤗 Transformersを使用して、低リソースAS...
- コンセプトスライダー:LoRAアダプタを使...
- 効率的にPythonコードを書く方法:初心者...
- 「学習におけるマウスの驚くべきアプロー...
- 複数モードモデルとは何ですか?
- ディープサーチ:Microsoft BingがGPT-4と...
- 「スローリー・チェンジング・ディメンシ...
- 「最も価値のあるコードは、書くべきでな...
- 「AI業界の状況がわかるカンファレンスの...
- 「機械学習におけるChatGPTコードインタプ...
- 「Amazon SageMaker Canvasを使用して、コ...
- 「GPU上の行列乗算」.
- 「メタのMusicGenを使用してColabで音楽を...
「Amazon SageMakerを使用して、マルチモダリティモデルを用いた画像からテキストへの生成型AIアプリケーションを構築する」
この投稿では、人気のあるマルチモーダリティモデルの概要を提供しますさらに、これらの事前訓練モデルをAmazon SageMakerに展開する方法も示しますさらに、特に、eコマースのゼロショットタグと属性生成および画像からの自動プロンプト生成など、いくつかの現実世界のシナリオに焦点を当てながら、これらのモデルの多様な応用についても議論します
「Amazon SageMakerでのMLOpsによる堅牢な時系列予測」
データ駆動の意思決定の世界では、時系列予測は企業が過去のデータのパターンを利用して将来の結果を予測するための重要な要素です資産リスク管理、トレーディング、天気予報、エネルギー需要予測、バイタルサインモニタリング、交通分析などの分野で働いている場合、正確に予測する能力は成功に不可欠ですこれらの応用では、[…]
「プラネットデータとAmazon SageMakerの地理空間能力を活用して、クロップセグメンテーションの機械学習モデルを構築する」
この分析では、K最近傍法(KNN)モデルを使用して、作物セグメンテーションを実施し、農業地域における地上の真相画像とこれらの結果を比較します私たちの結果は、KNNモデルによる分類が、2015年の地上の真相分類データよりも2017年の現在の作物畑の状態をより正確に表していることを示していますこれらの結果は、Planetの高頻度の地球規模の画像の力を示しています農業畑は頻繁に変化し、シーズンによっては複数回変化することがありますが、この土地を観察し分析するために高頻度の衛星画像が利用可能であることは、農業地や急速に変化する環境の理解にとって非常に価値のあるものとなります
『今日、企業が実装できる5つのジェネレーティブAIのユースケース』
様々な産業で、エグゼクティブたちはデータリーダーにAIを活用した製品を作り上げるよう求めていますそれにより時間の節約や収益の促進、競争上の優位性の獲得を目指していますまた、OpenAIのようなテックジャイアントも同様です…
「私たちはAIとの関係をどのように予測できるのか?」
現在の段階やAGIの後の人間とAIの相互作用は常に議論の的です次の否定的な側面にいるのか、立場をとっているのかに関わらず、私たちの人生におけるAIの結果を解きほぐしたいと思います...
「迅速な最適化スタック」
編集者注釈:マイク・テイラーは、10月30日から11月2日までのODSCウエストでのスピーカーです彼のトーク「GPT-4とLangchainを使用したプロンプト最適化」をぜひチェックしてください!AIを使用する一般の人とプロンプトエンジニアの違いは、テストです大抵の人は2〜3回プロンプトを実行します...
『Amazon Bedrockの一般提供が発表されました』
Amazon Bedrockをご紹介しますこれは画期的な開発であり、Amazonは人工知能の景色を再構築すると約束しています4月に発表されたAmazon Bedrockは、革新的なAIモデルを完全に管理されたサービスとして提供し、組織の運営にシームレスに統合しますこの発表については、データおよび...
「Non-engineers guide LLaMA 2チャットボットのトレーニング」となります
イントロダクション このチュートリアルでは、誰でも一行のコードを書かずにオープンソースのChatGPTを構築する方法を紹介します!LLaMA 2ベースモデルを使用し、オープンソースのインストラクションデータセットでチャット用に微調整し、そのモデルを友達と共有できるチャットアプリにデプロイします。クリックだけで偉大さへの道を歩むことができます。😀 なぜこれが重要なのか?特にLLM(Large Language Models)を含む機械学習は、私たちの個人生活やビジネスにおいて重要なツールとなり、過去に例のないほど人気が高まっています。しかし、MLエンジニアリングの専門的なニッチ分野ではないほとんどの人々にとって、これらのモデルのトレーニングとデプロイメントの複雑さは手が届かないもののように思えます。機械学習の予想される未来が普遍的な個別のモデルで満たされるものになるのであれば、非技術的なバックグラウンドを持つ人々にこの技術を独自に活用する力を与えるには、将来的に課題が待ち受けています。 Hugging Faceでは、この包括的な未来への道を静かに築くために働いてきました。Spaces、AutoTrain、Inference Endpointsなどのツール群は、機械学習の世界を誰にでもアクセス可能にするために設計されています。 このチュートリアルでは、この民主的な未来がどれだけアクセス可能であるかを示すために、チャットアプリを構築するためにSpaces、AutoTrain、ChatUIを使用する方法を3つの簡単なステップで紹介します。コンテキストとして、私はMLエンジニアではなく、Hugging FaceのGTMチームのメンバーです。私がこれをできるなら、あなたもできます!さあ、始めましょう! Spacesの紹介 Hugging FaceのSpacesは、MLデモやアプリの構築とデプロイを簡単に行うためのGUIを提供するサービスです。このサービスを使用すると、GradioやStreamlitのフロントエンドを使用して素早くMLデモを構築したり、独自のアプリをDockerコンテナにアップロードしたり、あるいは事前に設定された複数のMLアプリケーションを即座にデプロイしたりすることができます。 このチュートリアルでは、Spacesからの事前構成済みのDockerアプリケーションテンプレート、AutoTrainとChatUIをデプロイします。 Spacesについてもっと詳しくはこちらをご覧ください。 AutoTrainの紹介 AutoTrainは、MLエンジニアでない(または開発者でない😮)人々がコードを書かずに最先端のMLモデルをトレーニングするためのノーコードツールです。NLP、コンピュータビジョン、音声、表形式のデータなどに使用することができ、今日行うようなLLMの微調整にも使用できます。 AutoTrainについてもっと詳しくはこちらをご覧ください。 ChatUIの紹介 ChatUIはその名の通りです。Hugging Faceが提供するオープンソースのUIで、オープンソースのLLMsと対話するためのインターフェースを提供します。特に、HuggingChatという完全オープンソースのChatGPTの代替としても使用されています。 ChatUIについてもっと詳しくはこちらをご覧ください。 ステップ1:新しいAutoTrain…
「データサイエンスのトップ7の無料クラウドノートブック」
「クラウドノートブックはデータサイエンスのゲームチェンジャーであり、コンピューティングへの無料アクセス、プリビルト環境、コラボレーション機能、サードパーティの統合などを提供していますこれらは、あなたのワークフローを向上させるために必要な全てを提供します」
「アメリカではデータサイエンティストの資格は何ですか?」
イントロダクション 現代のデータ駆動型社会では、企業はデータの役割を認識し、受け入れています。この認識により、データの蓄積が進んでいますが、その潜在力を引き出すためには、企業は専門の人材と人間の知性を求めています。データサイエンティストは、機械にこの情報を処理させることでデータの潜在力を最大限に活用する重要な役割を果たしています。ネイティブな国では機会が乏しく、アメリカでは多くの選択肢があるため、候補者が集まってきます。この記事では、アメリカでデータサイエンティストになるために必要な資格を獲得する方法をご紹介します。 なぜアメリカでデータサイエンティストになるべきか? アメリカは多くの有名なテクノロジー企業が集まる拠点であり、多くの候補者の夢です。高い給料、有望なキャリアの機会、スキルのショーケースによる認知の適切な場所を提供することで、アメリカでのデータサイエンティストのキャリアは繁栄しています。さらに、ネイティブの住民の才能不足、増加するデータの組織化の課題、多くの産業での要件の拡大などが、世界各国からの人材を引き寄せる主要な理由です。あなたの期待も高まりましたか?すぐに行動に移り、夢に向かって取り組み始めましょう。 アメリカでのデータサイエンティストの学歴要件 データサイエンティストの仕事に応募するためには、以下の学歴要件を満たす必要があります。 学士号:コンピュータサイエンス、統計学、数学などの関連分野での学士号が望ましいです。基礎概念を身につけ、基礎を築きます。 修士号:大学院ではより深い理解と概念的な知識を習得し、実務の経験も積みます。上級職の候補者には修士号を持つ人が好まれます。このレベルの資格を持つことで、研究や学術の道に進むこともできます。 オンラインコース:現実世界の要件を理解し、キャリアの転機に役立つオプションです。特定の職業に焦点を当てたコースもあります。たとえば、Analytics VidhyaのBlackBelt+プログラムは、データサイエンティストになりたいと思っている候補者を対象に、世界的に認められる証明書を提供しています。 アメリカのデータサイエンティストに必要な技術スキル 技術的な知識に関しては、アメリカのデータサイエンティストとして必要な2つのレベルのスキルがあります:基本的な技術スキルと専門的な技術スキルです。 データサイエンティストに求められる基本的な技術スキル 1. プログラミング言語(Python、R、SQL) データの処理とモデルの開発には重要な役割を果たします。Pythonのライブラリ(Pandas、NumPy、scikit-learnなど)はデータ処理に重要です。Rはデータ分析と統計のための専門的な言語であり、dplyrやggplot2などのパッケージがあります。SQLはクエリとデータベースの管理に必要です。 2. データの操作と分析 正確性のために、データをクリーニングして前処理する必要があります。特徴量エンジニアリング、仮説検定、モデルの検証、意思決定などは、プログラミング言語を使用して行います。 3. 機械学習と統計モデリング 予測モデルやデータ駆動の意思決定を構築するために重要です。アルゴリズムとフレームワークの知識は、仕事に特化した日常のタスクを達成するのに役立ちます。 4. データの可視化とレポート作成ツール…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.