Learn more about Search Results Transformer - Page 11
- You may be interested
- 「目標をより早く達成するための25のChatG...
- マイクロソフト エージェントAIがIdea2Img...
- なぜハイプが重要なのか:AIについて現実...
- 「カスタマイズされたLLMパワードAIアシス...
- 「PyGraftに会ってください:高度にカスタ...
- 「最先端のAI翻訳ソフトウェア/ツール(20...
- この AI ペーパーでは、X-Raydar を発表し...
- 「科学者たちが他の種とコミュニケーショ...
- Google AIは、MediaPipe Diffusionプラグ...
- 「中小企業オーナーが未来に向けて前向き...
- テキストと画像の検索を行うNodeJS AIアプ...
- 「Amazon SageMaker Canvasによるデータ処...
- 新しい方法で純粋な数学の美しさを探索する
- NVIDIA RTXビデオスーパーレゾリューショ...
- ブログ執筆のための20の最高のChatGPTプロ...
「40歳以上の方におすすめのクールなAIツール(2023年12月版)」
DeepSwap DeepSwapは、説得力のあるディープフェイクの動画や画像を作成したい人向けのAIベースのツールです。動画、写真、ミーム、古い映画、GIFなど、様々なコンテンツをリフェイスして簡単にコンテンツを作成することができます。このアプリにはコンテンツの制限がないため、ユーザーはどんなコンテンツのアップロードも行うことができます。また、初めて製品の定期購読ユーザーとなると、50%オフの特典を受けることができます。 Aragon Aragonを使用して、驚くべきプロフェッショナルなヘッドショットを手軽に撮影しましょう。最新のAI技術を活用して、自分自身の高品質なヘッドショットを瞬時に作成しましょう!写真スタジオの予約やドレスアップの手間を省いてください。写真の編集と修正が迅速に行われ、数日後ではなくすぐに受け取ることができます。次の仕事に就く際に優位性を持つ40枚のHD写真を受け取りましょう。 AdCreative.ai AdCreative.aiは、究極の人工知能ソリューションで広告とソーシャルメディアの効果を高めます。創造的な作業に費やす時間を減らし、数秒で生み出される高変換率の広告とソーシャルメディアの投稿に挨拶を告げましょう。AdCreative.aiを使って、成功を最大限に引き出し、努力を最小限に抑えましょう。 Hostinger AIウェブサイトビルダー Hostingerは、先進の人工知能エンジンの力を借りて、すべてのウェブサイトオーナーのための最高のAIウェブサイトビルダーを作成しています。このビルダーは、デザインプロセスをガイドし、レイアウト、カラースキーム、コンテンツ配置を提案し、ニーズに合わせてカスタマイズする自由を提供します。さまざまなデバイスに対応したレスポンシブデザインを維持しながら、細部のカスタマイズに取り組みましょう。 Otter AI Otter.AIは、人工知能を利用して、共有可能で検索可能でアクセス可能で安全なリアルタイムの会議の記録を提供します。音声を録音し、メモを書き、スライドを自動的にキャプチャし、要約を生成する会議アシスタントを手に入れましょう。 Notion Notionは、先進のAI技術を活用してユーザーベースを拡大しようとしています。最新の機能であるNotion AIは、ノートの要約、会議でのアクションアイテムの特定、テキストの作成と変更など、タスクをサポートする堅牢な生成AIツールです。Notion AIは、煩雑なタスクを自動化し、ユーザーに提案やテンプレートを提供することで、ワークフローを効率化し、ユーザーエクスペリエンスを簡素化・向上させます。 Codium AI 忙しい開発者向けの有意義なテストを生成します。CodiumAIを使用すると、IDE内で提案される非自明なテスト(そして自明なテストも!)を手に入れることができます。賢くコーディングし、価値をより多く創出し、プッシュする際に自信を持ちましょう。CodiumAIにより、開発者はテストとコードの分析に費やす時間を節約しながら、より迅速にイノベーションを実現します。あなたが意図した通りにコードを書きましょう。 Docktopus AI Docktopusは、100以上のカスタマイズ可能なテンプレートを備えたAIパワープレゼンテーションツールで、オンラインコンテンツの作成を簡素化します。数秒でプロのプレゼンテーションを作成できるようになりましょう。 SaneBox AIは未来ですが、SaneBoxでは12年以上にわたりAIを活用したメールの運営に成功し、平均ユーザーは週に3時間以上の受信トレイの管理時間を節約しています。…
トゥギャザーアイは、ShortおよびLongコンテキストの評価で最高のオープンソーストランスフォーマーに対抗する、StripedHyena-7Bという代替人工知能モデルを紹介します
AIと共に、シーケンスモデリングアーキテクチャへの大きな貢献を果たし、StripedHyenaモデルを導入しました。従来のトランスフォーマーに代わる選択肢を提供することで、計算効率とパフォーマンスを向上させることで、このフィールドを革新しました。 このリリースには、ベースモデルのStripedHyena-Hessian-7B(SH 7B)とチャットモデルのStripedHyena-Nous-7B(SH-N 7B)が含まれています。StripedHyenaは、昨年作成されたH3、Hyena、HyenaDNA、およびMonarch Mixerといった効果的なシーケンスモデリングアーキテクチャの学習からの重要な知見に基づいています。 研究者は、このモデルが長いシーケンスをトレーニング、ファインチューニング、および生成する際に、高速かつメモリ効率が向上していることを強調しています。StripedHyenaは、ゲート付き畳み込みとアテンションを組み合わせたハイエナオペレータと呼ばれるものによって、ハイブリッド技術を使用しています。また、このモデルは、強力なトランスフォーマーベースモデルと競合する初めての代替アーキテクチャです。OpenLLMリーダーボードのタスクを含むショートコンテキストのタスクでは、StripedHyenaはLlama-2 7B、Yi 7B、およびRWKV 14Bなどの最強のトランスフォーマーの代替アーキテクチャを上回っています。 このモデルは、ショートコンテキストのタスクと長いプロンプトの処理において、さまざまなベンチマークで評価されました。Project Gutenbergの書籍によるPerplexityスケーリング実験では、Perplexityが32kで飽和するか、このポイントを超えて減少することから、モデルがより長いプロンプトから情報を吸収する能力を示しています。 StripedHyenaは、アテンションとゲート付き畳み込みを組み合わせたユニークなハイブリッド構造によって効率を実現しています。研究者は、このハイブリッドデザインを最適化するために革新的な接ぎ木技術を使用したと述べており、トレーニング中にアーキテクチャの変更を可能にしました。 研究者は、StripedHyenaの重要な利点の1つは、トレーニング、ファインチューニング、および長いシーケンスの生成など、さまざまなタスクにおける高速性とメモリ効率の向上です。最適化されたTransformerベースラインモデルと比較して、StripedHyenaはFlashAttention v2とカスタムカーネルを使用して、32k、64k、および128kの行でエンドツーエンドトレーニングにおいて30%、50%、および100%以上優れています。 将来、研究者はStripedHyenaモデルでいくつかの領域で大きな進歩を遂げたいと考えています。彼らは、長いコンテキストを処理できるより大きなモデルを作成し、情報理解の限界を拡大したいと考えています。さらに、テキストや画像などのさまざまなソースからデータを処理して理解できるようにすることで、モデルの適応性を高めるためのマルチモーダルサポートを取り入れたいとしています。 最後に、StripedHyenaモデルは、ゲート付き畳み込みなどの追加計算を導入することによって、Transformerモデルに対して改善の余地を持っています。このアプローチは、線形アテンションに触発されたものであり、H3やMultiHyenaなどのアーキテクチャにおいて効果が証明されており、トレーニング中のモデルの品質を向上させ、推論効率に利点を提供します。
「ゼロから始めるLoRAの実装」
「LoRA(ローラ)は、既存の言語モデルを微調整するための効率的で軽量な方法を提供する、Low-Rank AdaptationまたはLow-Rank Adaptorsの頭字語ですこれには、BERTのようなマスクされた言語モデルも含まれます...」
「リアクト統合を使用した Slack で GPT のパワーを発揮する」
「先進の言語モデルと堅牢なコミュニケーションプラットフォームの融合によって、生産性、創造性、関与度を向上させる可能性が広がります」
「2024年のデータサイエンティストにとってのトップ26のデータサイエンスツール」
イントロダクション データサイエンスの分野は急速に進化しており、最新かつ最もパワフルなツールを活用することで、常に最先端に立つことが求められます。2024年には、プログラミング、ビッグデータ、AI、可視化など、データサイエンティストの業務のさまざまな側面に対応した選択肢が豊富に存在します。この記事では、2024年のデータサイエンスの領域を形作っているトップ26のデータサイエンスツールについて探っていきます。 データサイエンティストのためのトップ26のツール プログラミング言語によるツール 1. Python Pythonは、そのシンプルさ、多様性、豊富なライブラリエコシステムのため、データサイエンティストにとって必須の言語です。 主な特徴: 豊富なライブラリサポート(NumPy、Pandas、Scikit-learn)。 広範なコミュニティと強力な開発者サポート。 2. R Rは統計プログラミング言語であり、データ分析と可視化に使用され、頑健な統計パッケージで知られています。 主な特徴: 包括的な統計ライブラリ。 優れたデータ可視化機能。 3. Jupyter Notebook Jupyter Notebookは対話型のコンピューティング環境であり、データサイエンティストがライブコード、数式、可視化、ナラティブテキストを含むドキュメントを作成し共有することができます。 主な特徴: 複数の言語(Python、R、Julia)のサポート。 インタラクティブで使いやすい。…
「Mixtral 8x7Bについて知っていること ミストラルの新しいオープンソースLLM」
「ミストラルAIは、オープンソースのLLM(語彙・言語モデル)の領域で限界に挑戦する最も革新的な企業の一つですミストラルの最初のリリースであるミストラル7Bは、市場で最も採用されているオープンソースのLLMsの一つとなりましたA...」
「このAIニュースレターは、あなたが必要とするすべてです #77」
今週のAIのニュースは、Google(ジェミニ)とミストラル(8x7B)による新しい大規模言語モデルのリリースが主でしたモデルの発表におけるアプローチは、プレスイベントとデモによるもので、非常に異なっていました...
「技術的な視点からのGoogleの最強のマルチモーダルモデルGeminiの紹介」
ジェミニは、マルチモーダルな事前学習を通じて、さまざまな入力の理解と推論を達成しますこれは、マルチモーダルなベンチマークで人間の専門家を超える最初のモデルであり、優れた能力を示しています...
内部の仕組みを明らかにする:BERTのアテンションメカニズムの深い探求
イントロダクション BERT(Bidirectional Encoder Representations from Transformers)は、トランスフォーマーモデルと教師なし事前学習を活用した自然言語処理のためのシステムです。事前学習を行うことで、BERTはマスクされた言語モデリングと文予測の2つの教師なしタスクを通じて学習を行います。これにより、BERTはゼロからではなく、特定のタスクに適応することが可能になります。基本的に、BERTは言語を理解するためのユニークなモデルを使用した事前学習されたシステムであり、多様なタスクへの適用を容易にします。この記事では、BERTのアテンションメカニズムとその動作について理解しましょう。 さらに読む:BERTとは?ここをクリック! 学習目標 BERTのアテンションメカニズムを理解する BERTにおけるトークン化の方法 BERTにおけるアテンションの重みの計算方法 BERTモデルのPython実装 この記事はデータサイエンスブログマラソンの一環として公開されました。 BERTのアテンションメカニズム まず、アテンションとは、モデルが文の重要な入力特徴により大きな重みを置く方法の一つです。 以下の例を考えて、アテンションがどのように基本的に機能するかを理解しましょう。 例1 一部の単語に対して他の単語よりも高い注意が払われる 上記の文では、BERTモデルは次の単語「fell」の予測にとって、「cat」と動詞「jumped」により重みを置くことが重要であると判断するかもしれません。「cat」がどこからジャンプしたかを知るよりも、「cat」と「jumped」を知ることが重要です。 例2 次の文を考えてみましょう。 一部の単語に対して他の単語よりも高い注意が払われる 「spaghetti」という単語を予測するために、アテンションメカニズムはスパゲッティの品質「bland」よりも動詞「eating」により重みを大きくすることを可能にします。 例3…
「エキスパートのミックスについて解説」
ミクストラル8x7Bのリリース(発表、モデルカード)により、トランスフォーマのクラスがオープンAIコミュニティで最も話題となっています。それがエキスパートの混合(Mixture of Experts、略してMoEs)です。このブログ記事では、MoEsの構成要素、トレーニング方法、および推論時の考慮事項について見ていきます。 さあ、深く掘り下げてみましょう! 目次 ミクストラルとは何ですか? MoEsの簡潔な歴史 スパース性とは何ですか? MoEsのトークンのロードバランシング MoEsとトランスフォーマ スイッチトランスフォーマ ルータZ損失によるトレーニングの安定化 エキスパートは何を学ぶのですか? エキスパートの数をスケーリングすると事前トレーニングにどのような影響を与えるのですか? MoEsの微調整 スパースMoEsと密なモデルの使用時期はいつですか? MoEsを効果的に活用するために エキスパート並列処理 能力係数と通信コスト サービングテクニック 効率的なトレーニング オープンソースのMoEs ワークのエキサイティングな方向性 いくつかのリソース…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.