Learn more about Search Results RT-2 - Page 11
- You may be interested
- 『中にFunSearch:GoogleのDeepMindの新し...
- 画像処理におけるノイズとは何ですか? ...
- 「Salesforce Data Cloudを使用して、Amaz...
- 「PyTorch ProfilerとTensorBoardを使用し...
- 9/10から15/10までの週のトップ...
- 「Google DeepMindの研究者が、チェスの課...
- 大規模な生体分子動力学のためのディープ...
- 「Oktaの顧客アイデンティティで優れたデ...
- AIは宇宙からメタンの噴出を検出する
- ディープフェイクビデオを出し抜く
- 「Apache Sparkにおける出力ファイルサイ...
- 検索増強視覚言語事前学習
- クラウドコンピューティングとウェアラブ...
- 「ESGレポーティングとは何ですか?」
- 物理情報を持つDeepONetによる逆問題の解...
このAIニュースレターは、あなたが必要とするすべてです#71
今週、ジョー・バイデン大統領は人工知能の規制を再び注目させるために、人工知能の監督を目的とする行政命令に署名しましたこの指令は様々な政府機関に要請し、…
「YouTube動画の要約を作成するためのAIアシスタントの完全ガイド — Part 2」のための完全ガイド
このシリーズの前の部分では、YouTubeのビデオのトランスクリプトを取得しましたこの記事では、そのトランスクリプトを取り上げ、テキストを要約するパイプラインを作成します
ゲームプレイ再創造:AI革命
ゲームでAI革命を探求しましょう!この詳細な解説では、生成AIがゲームプレイを変革し、プレイヤーの興味を豊かにし、経済成長を促進していることが明らかになります
「AIガバナンスにおけるステークホルダー分析の包括的ガイド(パート1)」
「AIガバナンスジャーナルの前のエディションでは、AIガバナンスの12の基本原則を取り上げましたこれらの原則は、倫理的ジレンマの中で私たちを導くコンパスとして機能します効果的なAI...」
製造でのトピックモデリング
前回の記事では、ChatGPTを使ったトピックモデリングの方法と素晴らしい結果について話しましたタスクは、ホテルチェーンの顧客レビューを見て、言及されている主要なトピックを定義することでした...
機械学習のオープンデータセットを作成中ですか? Hugging Face Hubで共有しましょう!
このブログ投稿は誰のためですか? データ集中型の研究を行っている研究者ですか?研究の一環として、おそらく機械学習モデルの訓練や評価のためにデータセットを作成しており、多くの研究者がGoogle Drive、OneDrive、または個人のサーバーを介してこれらのデータセットを共有している可能性があります。この投稿では、代わりにHugging Face Hubでこれらのデータセットを共有することを検討する理由を説明します。 この記事では以下を概説します: なぜ研究者はデータを公開共有すべきか(すでに説得されている場合は、このセクションはスキップしてください) 研究者がデータセットを共有したい場合のHugging Face Hubのオファー Hugging Face Hubでデータセットを共有するための始め方のリソース なぜデータを共有するのですか? 機械学習は、さまざまな分野でますます利用され、多様な問題の解決における研究効率を高めています。特にタスクやドメインに特化した新しい機械学習手法を開発する際には、データがモデルの訓練や評価において重要です。大規模な言語モデルは、生物医学のエンティティ抽出のような特殊なタスクではうまく機能せず、コンピュータビジョンモデルはドメイン特化の画像の分類に苦労するかもしれません。 ドメイン固有のデータセットは、既存のモデルの限界を克服するために、機械学習モデルの評価と訓練に重要です。ただし、これらのデータセットを作成することは困難であり、データの注釈付けには相当な時間、リソース、およびドメインの専門知識が必要です。このデータの最大の影響を最大化することは、関係する研究者と各自の分野の両方にとって重要です。 Hugging Face Hubは、この最大の影響を実現するのに役立ちます。 Hugging Face Hubとは何ですか? Hugging Face…
データサイエンスのためのトップ10のTableauプロジェクト
イントロダクション データサイエンスの世界には技術的な専門知識を持つ多くの候補者がいますが、問題解決に優れた人材はごくわずかです。これらのスキルを効果的に伝えるためのコミュニケーション能力については、自然に得意な人もいますが、他の人は時間をかけてこの能力を開発することがあります。幸いにも、Tableauなどのツールの登場により、簡単な可視化オプションにアクセスできるようになりました。この文脈で、データサイエンスのためのトップ10のTableauプロジェクトを探ってみましょう。これらは、視覚化能力を高め、問題解決能力を増幅させ、潜在的な雇用主の前で実務経験を示すのに役立ちます。 初心者レベルのTableauサンプルプロジェクトのアイデア 初心者レベルのTableauプロジェクトをお探しの場合は、これ以上探す必要はありません。以下はいくつかの最も簡単なプロジェクトのリストです: 患者リスク保健ダッシュボード 医療分野の候補者は、患者データを使用して可能なリスクを分析し、データサイエンスにおける予測モデリングを行うことができます。特定の病院の患者やその他の任意の基準に基づく患者と関連した疾患の基本情報を収集することから始めると良いでしょう。分析によって健康へのリスク、特定の疾患の発症、または治療時間を予測することができます。患者リスク保健ダッシュボードをライン、棒グラフ、散布図を使って設計してください。 販売予測分析ダッシュボード このプロジェクトは初心者レベルのデータ分析とデータサイエンスを促進し、履歴書用のTableauプロジェクトとして効果的です。各チームや部門の販売数量などの情報を作成または取得して、特定のアイテムの次の期間の販売を分析および予測するために使用します。さまざまなツールを使用して値を予測し、自分の解釈に基づいて合理的なアイデアを提供します。販売傾向の時系列ラインチャート、実際の数量販売の棒グラフ、分析目的の傾向線によるダッシュボードを作成してください。 マーケティングキャンペーンダッシュボード さまざまなマーケティングキャンペーンのパフォーマンスを分析するためにマーケティングデータを活用することができます。その結果、特定のマーケティングキャンペーンを続行したり中止したりするオプションを提案することができます。質問、セグメントの種類、およびそれぞれの異なる説明など、さまざまなデータタイプで構成される変数を利用して進めてください。回答と数を含む他の関連情報や分析を見つけ、要約された情報をトレンド分析によって示してください。セグメント分布を示すために円グラフを使用し、キャンペーンのパフォーマンスには棒グラフが適しています。マーケティングキャンペーン関連の可視化は非常に需要があります。 航空運賃分析ダッシュボード 航空産業はデータの可視化を活用しています。履歴書用のこの業界のTableauプロジェクトとして最適な問題設定は、フライト料金の予測です。ここでの練習プロジェクトは、特定の結果につながる複数のデータタイプと変数による上級レベルになります。それにはまた、探索的データ分析や隠れたパターンの特定も含まれます。後者は散布図で最もよく説明され、ヒートマップは価格の変動を示すために使用されます。 犯罪分析ダッシュボード 複数の変数を含む初心者レベルのプロジェクトのもう1つは、傾向を分析して予測するために重要です。また、犯罪者の次の行動を理解することで戦略を立案するのにも効果的です。データセットの関連性やプロジェクトの解決の緊急性を高めるための強度などのパラメータを含めることを検討してください。データの可視化を行い、期間に基づくパターンを求めてより深い理解を得てください。相関の散布図、トレンド分析のための折れ線グラフ、犯罪分布のためのツリーマップは、犯罪分析ダッシュボードの一般的なアイデアです。 空気品質と公害分析ダッシュボード プロジェクトのソリューションは、経験のためにプロジェクトを展示し、環境保護産業におけるTableauプロジェクトを紹介することができます。ある特定の地域で汚染や汚染物に関するデータセットを分析することができます。分析は原因に深く入り、適切な対策を予測します。また、適切な行動を特定することにも焦点を当てています。作成されたダッシュボードには、バーや折れ線グラフなどの複数のチャートが含まれる場合があります。 中級レベルのTableauプロジェクトのアイデア 経験を要する職に応募する際には、以下のプロジェクトを検討してください: 株式市場分析ダッシュボード 市場において使用される株式市場分析は意思決定を支援します。特定の場所で現在の市場のトレンドに関する包括的な情報を保持するTableauプロジェクトGitHubダッシュボードを作成することができます。提示される情報には、面積グラフやトレンドグラフを通じた指標、株式や市場分析、株価足チャートやヒートマップを通じた他の関連情報などが含まれる場合があります。頻繁な変更に基づいた適切な可視化がここでは必要です。また、このセクターでは大容量のデータに精通していることが求められます。 グローバルテロリズム分析ダッシュボード このプロジェクトを通じて得られる経験と学習したスキルは、政府の役に立ちます。作成された可視化は、パターンの識別を通じて適切な戦略でテロリズムと戦う国々を支援するための正当な行動を支援します。これには、マップの描画と続いてライングラフや横棒グラフによる表現が含まれます。 COVID-19分析ダッシュボード 健康産業の対応能力を示すための別の実用的なプロジェクトです。TableauプロジェクトGitHubダッシュボードを使用して、異なる地域での予測とリアルタイム分析を提供することができます。実際のCOVID-19の描写で使用されています。可視化は、さまざまな強度や他の要件に応じて大容量のデータの拡散を個別に表示できるようになっています。追加のアイデアについては、地理空間マップを使用して拡散を表示し、強度にはヒートマップ、日別のケースには折れ線グラフを使用することができます。…
VoAGIニュース、10月27日:データサイエンスをマスターするための5冊の無料の本 • LLMをマスターするための7つのステップ
今週のVoAGIで、大規模言語モデルの学習からLLMアプリの構築と展開までを7つのステップで行いますPython、統計学、線形代数、機械学習、ディープラーニングの学習に役立つ無料の書籍リストもチェックしてくださいさらに、他にもたくさんの情報があります!
「ESAのセンチネルAPIに深く潜入」
ヨーロッパ宇宙機関は、さまざまな種類のリモートセンシングを活用して、地球観測を支援するコペルニクスプログラムの一環として、センチネルミッションを実施しています
アマゾンセイジメーカーの地理情報能力を使用したメタン排出ポイント源の検出と高周波監視
メタン(CH4)は、石油やガス抽出、石炭採掘、大規模な畜産、廃棄物処理など、他のさまざまな源から発生する、主要な人為的温室効果ガスですCH4の地球温暖化潜在能はCO2の86倍であり、気候変動に関する政府間パネル(IPCC)は、メタンが観測されている温室効果の30%を担っていると推定しています
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.