Learn more about Search Results RT-1 - Page 11
- You may be interested
- 「Chroma DBガイド | 生成AI LLMのための...
- 「2023年7月のAIボイスチェンジャーツール...
- 「GPT-4はこの戦いで449対28で敗北した」
- 新しい方法:AIによって地図がより没入感...
- 「ヘルスケアとゲノミクス産業が機械学習...
- メタ&ジョージア工科大学の研究者たちは...
- メタのLlama 2モデルの概要:新機能は何で...
- 学生アンバサダープログラムの応募受付が...
- LangChainによるAIの変革:テキストデータ...
- FLOPsとMACsを使用して、Deep Learningモ...
- Amazon MusicはSageMakerとNVIDIAを使用し...
- Amazon SageMakerのHugging Face推定器と...
- 「Python初心者のための独自のPythonパッ...
- 関数を呼び出す
- 「グラフ彩色問題:正確な解とヒューリス...
「LlamaIndex:カスタムデータで簡単にLLMアプリケーションを強化する」
「LlamaIndex」という革新的なツールを使用して、プライベートデータと大規模言語モデル(LLM)の統合を探求しましょうこの包括的なガイドでは、インストール方法、ユースケース、およびLlamaIndexとLangchainの選択について学びましょう
「SDXLのためのシンプルな最適化の探究」
ステーブル ディフュージョン XL (SDXL)は、Stability AIによる高品質な超現実的な画像生成を目的とした最新の潜在ディフュージョンモデルです。これは、手やテキストの正確な生成、および空間的に正しい構成といった、以前のステーブル ディフュージョンモデルの課題を克服しています。さらに、SDXLはコンテキストにより適応しており、より見栄えの良い画像を生成するために、プロンプトで少ない単語数を必要とします。 しかし、これらの改善は、かなり大きなモデルのコストで実現されています。具体的には、基本のSDXLモデルには35億のパラメータ(特にUNet)があり、それは以前のステーブル ディフュージョンモデルのおよそ3倍の大きさです。 SDXLの推論速度とメモリ使用量を最適化する方法を探るために、A100 GPU(40 GB)でいくつかのテストを行いました。各推論実行において、4つの画像を生成し、それを3回繰り返し行います。推論レイテンシを計算する際には、3回のイテレーションのうち最終イテレーションのみを考慮します。 つまり、デフォルトの精度とデフォルトのアテンションメカニズムを使用してSDXLをそのまま実行すると、メモリを28GB消費し、72.2秒かかります! from diffusers import StableDiffusionXLPipelinepipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda")pipeline.unet.set_default_attn_processor() しかし、これは非常に実用的ではなく、特に4つ以上の画像を生成する場合には遅くなる可能性があります。また、よりパワフルなGPUを持っていない場合、メモリ不足のエラーメッセージに遭遇するかもしれません。では、どのようにしてSDXLを最適化して推論速度を向上させ、メモリ使用量を減らすことができるでしょうか? 🤗 Diffusersでは、SDXLのようなメモリ集中型モデルを実行するための最適化のトリックとテクニックを数多く提供しています。以下では、推論速度とメモリに焦点を当てます。 推論速度 ディフュージョンはランダムなプロセスですので、好みの画像が得られる保証はありません。よくあるのは、複数回の推論を実行して反復する必要があることです。そのため、速度の最適化が重要です。このセクションでは、低精度の重みとメモリ効率の良いアテンションおよびPyTorch 2.0のtorch.compileの使用に焦点を当てて、速度を向上させ、推論時間を短縮する方法を紹介します。…
あなたのRAGベースのLLMシステムの成功を測る方法
「リサーチ・オーグメンテッド・ジェネレーション、またはRAG、は今年登場した大規模言語モデル(LLM)の最も一般的な使用例ですテキストの要約や生成はしばしば焦点となりますが...」
VRが教育界に革命をもたらし始めてから、数年が経ちましたこれは、学生たちに新しい学習体験を提供する優れたツールとなっています仮想現実技術(VR)は、教育における革新的な手法として注目を浴びており、2024年にはさらに進化を遂げることが予想されています
2024年にVRが教育を革新する方法を探求し、魅力的で没入型の学びを体験してくださいメリット、課題、導入手順を発見しましょう
ドクトランとLLM:消費者の苦情を分析するための強力なコンビ
紹介 現在の競争の激しい市場では、企業は消費者の苦情を効果的に理解し解決することを目指しています。消費者の苦情は、製品の欠陥やお客様サービスの問題、請求エラーや安全上の懸念など、さまざまな問題についての洞察を提供します。これらは、企業と顧客の間のフィードバック(製品、サービス、または経験に関するもの)ループで非常に重要な役割を果たします。これらの苦情を分析し理解することで、製品やサービスの改善、顧客満足度、全体的なビジネスの成長に対する貴重な示唆を得ることができます。この記事では、Doctran Pythonライブラリを活用して消費者の苦情を分析し洞察を抽出し、データに基づいた決定を行う方法について探っていきます。 学習目標 この記事では以下のことを学びます: doctran pythonライブラリとその主な機能について学ぶ ドキュメント変換と分析におけるdoctranとLLMの役割について学ぶ doctranがサポートする抽出、黒塗り、照会、精緻化、要約、翻訳の6つのドキュメント変換の詳細を調査する 消費者の苦情からの生のテキストデータのアクション可能な洞察への変換の全体的な理解を得る doctranの文書データ構造、ExtractPropertyクラス、プロパティを抽出するためのスキーマの定義について理解する この記事はData Science Blogathonの一環として公開されました。 Doctran Doctranは、ドキュメントの変換と分析に特化した最先端のPythonライブラリです。テキストデータの前処理、重要な情報の抽出、カテゴリ化/分類、照会、情報の要約、他の言語へのテキストの翻訳など、一連の機能を提供します。DoctranはOpenAI GPTベースのLLM(Large Language Models)やオープンソースのNLPライブラリを使用してテキストデータを分析します。 Doctranは以下の6種類のドキュメント変換をサポートしています: 抽出: ドキュメントから有益な機能/プロパティを抽出する 黒塗り: ドキュメントから個人を識別できる情報(氏名、メールアドレス、電話番号など)を削除する。内部的には、データをOpenAIに送る前に、敏感情報を削除するためにspaCyライブラリを使用します…
『Gradioを使ったリテンションの理解』
「最初のウェブアプリケーションを作った瞬間を覚えていますそれは約8年前で、私は比較的初心者のアナリストで、BIツールがすべての問題を解決できると確信していましたその…」
「LLMとGUIの協力:チャットボットを超えて」
私たちは、自然言語バーの形で、会話型AIとグラフィカルユーザインターフェース(GUI)の相互作用を最適に融合させるための革新的なUXアプローチを紹介しますそれは画面の下部に配置されています
「13の簡単なステップでローカルコンピュータにAutoGenをインストールする方法」
「私は、AIエージェントとAutoGenの能力に興奮していると思いますそして、あなたは実践ガイドのためにここにいるのでしょう注意:もし AIエージェントの旅をどこから始めればいいかわからない場合は、説明しています...」
特定のドメインに特化した物体検出モデルの最適化方法
物体検出は、学術界から産業分野まで、広範な領域で広く採用されていますその理由は、低い計算コストで素晴らしい結果を提供する能力にありますしかし、それにもかかわらず、...
AIの障壁を越える:OpenAIがLLMsをメインストリームの成功へ導くまで
「ML開発者ツール(広くはMLOpsとして分類される)が単体のビジネスとして成り立つかどうかについては常々懐疑的な意見を述べてきましたが、ごく一部の例外を除いて、私の意見は正しかったと証明されました...」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.