Learn more about Search Results L - Page 11

ヨーロッパのAI最大手MISTRAL AIが3億8500万ユーロを調達

技術のダイナミックな世界では、人工知能(AI)が産業を再構築している中、フランスのスタートアップ企業であるMistral AIが注目されています。3億8500万ユーロの資金調達を達成したMistral AIは、単なるヘッドラインを作るだけでなく、欧州がグローバルAI競争で進むための道を切り開いています。本記事では、Mistral AIの旅について探求し、イノベーションの新たな基準を設定し、これが欧州におけるAIの将来にどのような意味を持つのかを探ります。 資金調達のマイルストーン Mistral AIの最近の財務的な成功は、同社の可能性と投資家たちがそのビジョンに対する信頼の現れです。3億8500万ユーロの調達は、欧州のAI企業における最大の資金調達ラウンドの一つであり、重要な成果です。この資金の流入により、Mistral AIの研究開発の取り組みが加速され、チームが拡大され、製品の提供が向上する見込みです。 イノベーションと拡大 この投資は、単なる資金の増加にとどまらず、成長とイノベーションの触媒です。トップの人材を採用し、事業を拡大する計画を立てたMistral AIは、欧州におけるAIの卓越性の象徴となることでしょう。同社が最先端のAIソリューションの開発に注力することは、医療から金融など、様々なセクターを変革する可能性があります。 欧州のAIの野望 Mistral AIの台頭は、欧州がグローバルなAIのパワーハウスになるという大きな進展です。欧州のテックシーンは長い間シリコンバレーの影に隠れていましたが、これまでのリーダーとして台頭するこの企業によって、その風景は変わりつつあります。この資金調達ラウンドは、欧州がAIイノベーションの世界的な舞台で自分の場所を確立できる準備が整ったことを明確に示しています。 また読む: EUのAI法によってグローバルなAI規制の基準が設定され、アジア諸国は慎重な姿勢をとる 競争力のある特徴 この競争的な産業でMistral AIを際立たせるのは、問題解決への独自のアプローチと倫理的な開発への取り組みです。同社のソリューションはスケーラブルで効率的かつ責任あるものとして設計されており、ビジネスのニーズに応えるだけでなく、社会的な価値観とも一致しています。このイノベーションと誠実さのバランスは、投資家やクライアントを惹きつける要素です。 私たちの意見 Mistral AIの驚異的な資金調達の成功は、単なる財務的な勝利を超えたものであり、欧州のAIセクターにとっては希望の光となっています。同社がAIと可能性の限界を押し広げ続ける間、欧州が明日のテクノロジーのリーダーとなる道を切り開いています。Mistral AIが先頭に立つことで、欧州のAIの未来はこれまで以上に輝かしくなります。

「OpenAIやLM Studioに頼らずにAutoGenを使用する方法」

イントロダクション OpenAIやLMスタジオに頼らずに、あなた自身のAIチームを作成する準備はできていますか?もはや銀行を荒らすことも、アプリをダウンロードすることもありません。llama-cpp-pythonの設定から、autogenフレームワークのヘルプを借りてローカルLLMのパワーを探求するまで。OpenAI APIに依存せず、Autogenのフルポテンシャルを引き出す準備をしましょう。 学習目標 詳細に入る前に、この記事の主な学習目標を概説しましょう: さまざまなAIライブラリとツールを評価・比較する方法を学ぶ。 llama-cpp-pythonがOpenAI APIの代替として提供できる方法を探索する。 2つの現実世界の使用例で獲得した知識を適用する: アルゴリズムメンターチームの構築と金融チャート生成の自動化。 AutoGenの改善されたユーザーエクスペリエンスを探索し、統合されたIPythonを通じて即時のコード実行結果を得る。 この記事はData Science Blogathonの一環として公開されました。 ツール紹介: llama-cpp-python、AutoGen、およびローカルLLM しかし、このテックツールキットの特別な点は何でしょうか? llama-cpp-pythonは、LLMAのような有名なモデルを含めて、ローカルでLLMを実行するためのゲートウェイです。コンピュータ上にAIのスーパースターがいるようなもので、さまざまなBLASバックエンドのサポートにより、速度は驚異的です! AutoGen AutoGenは、基盤モデルを使用するための高レベルな抽象化として機能する統一されたマルチエージェント会話フレームワークです。LLM、ツール、および人間の参加者を統合し、自動化されたチャットを通じて能力のある、カスタマイズ可能で会話形式のエージェントを結合します。エージェント同士が自律的にコミュニケーションして共同作業を行うことができ、複雑なタスクを効率的に進めることやワークフローを自動化することが可能です。 もしAutoGenの機能をより深く探求し、戦略的なAIチームビルディングをどのように支援するかを調べることに興味があるなら、当社の専用ブログ「Strategic  AI Team Building…

メタAI研究者が生産準備完了の強化学習AIエージェントライブラリ「Pearl」をオープンソース化

強化学習(RL)は、エージェントが適切なアクションを取り、報酬を最大化するために学習する機械学習のサブフィールドです。強化学習では、モデルは経験から学習し、最適なアクションを特定します。近年、RLは大幅に進化し、自律走行車からロボティクス、さらにはゲーミングまで、幅広い分野で応用されています。また、RLシステムの容易な開発を支援するライブラリの開発も大きく進歩しています。そのようなライブラリの例にはRLLib、Stable-Baselines 3などがあります。 成功したRLエージェントを作成するには、遅延報酬やその他の影響などの問題に対処する必要があります。また、利用と探索のバランスを見つけたり、安全性やリスク要件などの追加パラメータを考慮することで、破滅的な状況を回避する必要があります。現在のRLライブラリは非常に強力ですが、これらの問題を十分に解決していません。そのため、Metaの研究者が「Pearl」というライブラリをリリースしました。このライブラリは上記の問題を考慮し、ユーザーが実世界のアプリケーションに対して多目的なRLエージェントを開発できるようにします。 PearlはPyTorchに基づいて構築されており、GPUと分散トレーニングとの互換性があります。また、テストと評価のためのさまざまな機能も提供しています。Pearlの主なポリシーラーニングアルゴリズムはPearlAgentと呼ばれ、知識の探索、リスク感度、安全制約などの特徴があり、オフラインとオンラインの学習、安全学習、履歴の要約、再生バッファなどのコンポーネントがあります。 効果的なRLエージェントは、オフライン学習アルゴリズムを使用してポリシーを学習し、評価できるようにする必要があります。さらに、オフラインとオンラインのトレーニングには、データ収集とポリシー学習のためのセキュリティ対策が必要です。それに加えて、エージェントはさまざまなモデルを使用して状態表現を学習し、履歴を状態表現に要約して望ましくないアクションをフィルタリングする能力も持っている必要があります。最後に、エージェントは再生バッファを使用してデータを効率的に再利用し、学習効率を向上させる必要もあります。Metaの研究者は、これらのすべての機能をPearl(特にPearlAgent)の設計に取り入れ、RLエージェントの設計において多目的かつ効果的なライブラリとしての潜在能力を備えています。 研究者は、モジュール性、知識の探索、安全性などの要素を評価しながらPearlを既存のRLライブラリと比較しました。Pearlは、これらの機能をすべて実装し、必要な機能を組み込んでいない競合他社とは区別されました。たとえば、RLLibはオフラインRL、履歴の要約、再生バッファをサポートしていますが、モジュール性と知識の探索をサポートしていません。同様に、SB3はモジュール性、安全な意思決定、およびコンテキストバンディットを組み込んでいません。これが研究者によって注目される他のライブラリとの違いです。 Pearlはまた、リコメンダーシステム、オークション入札システム、クリエイティブセレクションなど、さまざまな実世界のアプリケーションをサポートする予定です。これにより、異なるドメインでの複雑な問題を解決するための有望なツールとなります。RLは近年、大幅な進歩を遂げていますが、実世界の問題を解決するための実装は依然として困難です。しかし、Pearlは知識の探索や安全性、履歴の要約などの独自の特徴を持つことで、RLの広範な統合において貴重なツールとしての潜在能力を持っています。

「GoogleがCloud TPU v5pとAIハイパーコンピューターを発表:AI処理能力の飛躍」

Googleは、AIハイパーコンピュータと呼ばれる画期的なスーパーコンピューターアーキテクチャと共に、テンサープロセッシングユニットのリリースで波紋を広げました。これらの革新的なリリースは、リソース管理ツールのダイナミックワークロードスケジューラーとともに、組織のAIタスクの処理における重要な前進を示しています。 直近の11月にリリースされたv5eに継ぎ、Googleの最もパワフルなTPUであるCloud TPU v5pは、従来の設計とは異なり、性能志向のデザインを採用しており、処理能力の大幅な向上を約束しています。ポッドごとに8,960個のチップを装備し、チップ間のインターコネクションスピードは4,800 Gbpsを誇ります。このバージョンは、前のTPU v4と比べて倍のFLOPSと高帯域幅メモリ(HBM)の3倍の印象的な増加を提供します。 パフォーマンスへの注力が大きな成果をもたらし、Cloud TPU v5pは、大規模なLLMモデルのトレーニング時にTPU v4と比べて驚異的な2.8倍の速度向上を実証しています。さらに、第2世代のSparseCoresを活用することで、v5pは前任者に比べて組み込み密なモデルのトレーニング速度が1.9倍速くなります。 一方、AIハイパーコンピューターは、スーパーコンピューターアーキテクチャの革新的な存在となっています。最適化されたパフォーマンスハードウェア、オープンソースソフトウェア、主要な機械学習フレームワーク、そして適応的な消費モデルを組み合わせています。AIハイパーコンピューターは、単一のコンポーネントの補強ではなく、協力的なシステム設計を活用して、トレーニング、微調整、そしてサービスのドメイン全体でAIの効率と生産性を向上させています。 この高度なアーキテクチャは、超大規模なデータセンターインフラストラクチャをベースに、厳密に最適化された計算、ストレージ、ネットワークデザインを特徴としています。さらに、JAX、TensorFlow、PyTorchなどの機械学習フレームワークをサポートするオープンソースソフトウェアを介して関連するハードウェアへのアクセスも提供しています。この統合は、Multislice TrainingやMultihost Inferencingなどのソフトウェアと、Google Kubernetes Engine(GKE)やGoogle Compute Engineとの深い統合にも及びます。 AIハイパーコンピューターを特筆するのは、AIタスクに特化した柔軟な消費モデルです。革新的なダイナミックワークロードスケジューラーやCommitted Use Discounts(CUD)、オンデマンド、スポットなどの伝統的な消費モデルを導入しています。このリソース管理およびタスクスケジューリングプラットフォームは、Cloud TPUとNvidia GPUをサポートし、ユーザーの支出を最適化するために必要なすべてのアクセラレーターのスケジュールを効率化します。 このモデルでは、Flex…

Google DeepMindはAlphaCode 2を導入しました:競争プログラミングの優れた進歩において、ジェミニモデルの力を利用した人工知能(AI)システム

機械学習の分野では、テキストデータの生成と理解において驚くべき進展が見られています。しかし、問題解決における新しい革新は比較的単純な算術とプログラミング問題に制約されています。競技プログラミングは、限られた時間内に複雑な問題のためのコードソリューションを書く競技者のコーディングスキルを評価する厳しいものであり、批判的思考、論理的思考、アルゴリズムとコーディングの概念の徹底的な理解が必要です。 Google DeepMindは、競技プログラミングの分野を解決し、向上させることを目指して、AlphaCode 2を導入しました。AlphaCodeよりも高速で正確さと迅速さが求められるゲームであり、AlphaCode 2は基準を引き上げ、ゲームのルールを変えました。この人工知能(AI)システムは、GoogleのGeminiチームによって2023年に作成された強力なGeminiモデルに基づいており、その洗練された論理思考と問題解決能力の基盤となっています。 チームは、AlphaCode 2のアーキテクチャは強力な大規模言語モデル(LLM)と競技プログラミングに特化した高度な検索および再順位付けシステムに基づいていると共有しています。それはコードサンプルを生成するポリシーモデルのファミリー、多様性を促進するサンプリングメカニズム、非準拠のサンプルを除去するフィルタリングメカニズム、冗長性を除去するクラスタリングアルゴリズム、および最適な候補を選ぶスコアリングモデルで構成されています。 プロセスの最初のステップは、AlphaCode 2の基盤となったGemini Proモデルです。それはGOLDトレーニングターゲットを使って厳密な調整を2回行います。1回目はCodeContestsデータセットの新バージョンに焦点を当て、多くの問題と人間が生成したコード例が含まれています。その結果、競技プログラミングで遭遇する多くの困難に対応するために特別に設計された洗練されたモデルのファミリーが生成されます。 AlphaCode 2は包括的かつ綿密なサンプリング戦略を採用しています。システムはチャレンジごとに最大100万のコードサンプルを生成し、各サンプルにランダムに温度パラメータを割り当てることで多様性を促進します。高品質のC++のサンプルがGeminiの助けを借りてAlphaCode 2に使用されています。 評価によると、AlphaCode 2は競技プログラミングのよく知られたプラットフォームであるCodeforcesで最近のテストでその能力を示しました。AlphaCode 2はたった10回の試行で驚異的な43%の問題に回答することができました。同様の状況下で25%の問題を扱った先行システムAlphaCodeに比べて、これは重要な進展です。AlphaCode 2は平均して85番目のパーセンタイルに位置し、中央値の競合相手を上回り、かつてはAIシステムの能力とは考えられていなかったレベルで動作しています。 まとめると、AlphaCode 2は競技プログラミングにおいて困難な問題に取り組むためにAIシステムを使用する方法を示す、驚くべき開発です。このシステムの成功は技術的な成果であり、人間とAIプログラマがプログラミングの限界を押し上げるために協力する可能性を示しています。

なぜOpenHermes-2.5はGPT-4やLLama2 13Bよりも優れているのか? 結果はこちら

したがって、この記事では、llama2 13 Billion、GPT-4、OpenHermes 2.5などの主要なプレーヤーからの最新のAIの進歩について詳しく説明しますこの段階ごとのガイドでは、.........

香港大学和阿里巴巴集团的AI研究揭示了“LivePhoto”:文本控制的视频动画和动作强度定制的重大突破

香港大学、阿里巴巴集团、蚂蚁集团的研究人员开发了LivePhoto,以解决当前文本到视频生成研究中对时间运动的忽视问题。LivePhoto使用户能够通过文本描述来给图像添加动画效果,同时减少文本到动画映射中的歧义。 该研究通过提出LivePhoto,一个实用的系统,解决了现有图像动画方法的局限性,使用户能够通过文本描述来给图像添加动画效果。与之前依赖于视频或特定类别的作品不同,LivePhoto使用文本作为生成通用领域定制视频的灵活控制方法。文本到视频生成领域已经得到发展,近期的方法利用了预训练的文本到图像模型,并引入了时间层。LivePhoto通过允许用户通过文本控制运动强度,提供了一个多功能和可定制的文本驱动图像动画框架,适用于各种领域。 LivePhoto是一个允许用户通过文本描述来给图像添加动画效果的系统。通过LivePhoto,用户可以对运动强度进行精确控制,轻松将与运动相关的文本指令解码为视频。这个高度灵活和可定制的系统允许用户从文本指令生成多样化内容。LivePhoto对文本驱动图像动画做出了宝贵的贡献。 该系统包括运动模块、运动强度估计模块和文本重新加权模块,用于有效的文本到动画映射,解决了文本到视频生成中的挑战。利用稳定扩散模型引入额外的模块和层以进行运动控制和文本引导的视频生成。LivePhoto利用内容编码、交叉注意力和噪音逆向进行引导,便于根据文本指令生成定制视频,并保留整体特征。 LivePhoto在将与运动相关的文本指令解码为视频方面表现出色,展示了它通过文本描述来控制时间运动的能力。LivePhoto为用户提供了一个额外的控制信号,用于自定义运动强度,在给图像添加文本描述时提供了灵活性。该系统以稳定扩散为基本模型,通过模块和层的增强实现了有效的文本到视频生成和运动控制。 总而言之,LivePhoto是一个实用而灵活的系统,使用户能够通过定制的运动控制和文本描述创建带有动画效果的图像。它的运动模块用于时间建模和强度估计,将文本指令解码为多样化的视频,使其在不同的动作、相机移动和内容方面具有高效性。其广泛的应用使其成为基于文本指令创建动画图像的有用工具。 为了改进LivePhoto的性能,探索更高的分辨率和像素密度模型(如SD-XL)可能会显著提高整体表现。解决文本中关于运动速度和强度描述的问题可以提高与运动的一致性对齐。利用超分辨网络作为后处理可能会提高视频的平滑度和分辨率。提高训练数据质量可以增强生成的视频中的图像一致性。未来的工作可以完善训练流程并优化运动强度估计模块。研究LivePhoto在各种应用和领域中的潜力是未来研究的一个有前景的方向。

AI研究でα-CLIPが公開されました ターゲテッドアテンションと強化された制御によるマルチモーダル画像分析の向上

さらなる焦点化と制御された画像理解および編集のために、どのようにCLIPを改善できるでしょうか?上海交通大学、復旦大学、香港中文大学、上海AI研究所、マカオ大学、およびMThreads Inc.の研究者は、点、ストローク、またはマスクで定義された指定領域を認識する能力を強化するために、コントラスティブ ランゲージ-イメージ プリトレーニング(CLIP)の制限に対処することを目指すAlpha-CLIPを提案します。この改良により、Alpha-CLIPは、画像認識や2Dおよび3D生成タスクへの貢献を含む多様な下流タスクで、より良いパフォーマンスを発揮することができます。 マスクCLIP、SAN、MaskAdaptedCLIP、およびMaskQCLIPなど、さまざまな戦略がCLIPに領域認識を持たせるために試されてきました。一部の方法は、切り抜きやマスクを用いて入力画像を変更します(ReCLIPやOvarNetなど)。他の方法は、赤い円やマスクの輪郭を使用してCLIPの注目を誘導します(Red-CircleやFGVPなど)。これらのアプローチは、CLIPのプリトレーニングデータセットのシンボルに依存することが多く、ドメインのギャップを引き起こす可能性がありますが、Alpha-CLIPは、画像コンテンツを変更せずに指定された領域に焦点を当てるための追加のアルファチャネルを導入し、一般化性能を保持しながら領域の焦点を強化します。 CLIPおよびその派生物は、下流タスクのために画像とテキストから特徴を抽出しますが、特定の領域に焦点を当てることは、より詳細な理解とコンテンツ生成において重要です。Alpha-CLIPは、コンテンツを変更せずに指定された領域に焦点を当てるためのアルファチャネルを導入し、画像認識、マルチモーダル言語モデル、および2D/3D生成などのタスクで、CLIPを強化します。Alpha-CLIPをトレーニングするには、セグメントアニシングモデルと画像キャプショニングのためのマルチモーダルな大規模モデルを使用して、領域-テキストペアのデータを生成する必要があります。 Alpha-CLIP方法は、コンテンツを変更せずに特定の領域に焦点を当てるための追加のアルファチャネルを導入したものであり、これによりコンテキスト情報が保持されます。データパイプラインは、モデルトレーニングのためにRGBA-領域テキストペアを生成します。分類データが領域-テキスト理解に与える影響を調査するために、グラウンディングデータのみで事前トレーニングされたモデルと分類およびグラウンディングデータの組み合わせを比較することによるデータ減衰の研究が行われます。ゼロショット実験では、リファリング表現の理解においてAlpha-CLIPがCLIPに代わり、競争力のある領域-テキスト理解の結果を達成します。 Alpha-CLIPは、点、ストローク、マスクを伴うタスクにおいてCLIPを改善し、焦点を当てることができる特定の領域を拡張します。ただし、グラウンディングのみのプリトレーニングを上回り、領域の知覚能力を向上させます。ImageNetなどの大規模な分類データセットは、そのパフォーマンスに大きく貢献しています。 結論として、Alpha-CLIPモデルは元のCLIPを置き換え、領域焦点の機能を効果的に向上させることが実証されています。さらにアルファチャネルを組み込むことで、Alpha-CLIPはゼロショット認識の改善やリファリング表現理解タスクでベースラインモデルを上回る競争力のある結果を示しています。関連領域に焦点を当てるモデルの能力は、分類とグラウンディングのデータの組み合わせによる事前トレーニングによって向上されています。実験結果は、Alpha-CLIPが前景領域やマスクを持つシナリオで有用であり、CLIPの能力を拡張し、画像テキスト理解を改善する可能性があることを示しています。 将来の課題として、この研究はAlpha-CLIPの制限を解決し、その能力と適用範囲を拡大するために解像度を向上させることを提案しています。研究は、領域-知覚能力を向上させるためにより強力なグラウンディングおよびセグメンテーションモデルを活用することを提案しています。研究者は、画像コンテンツをより良く理解するために、興味のある領域に焦点を当てることの重要性について強調しています。Alpha-CLIPは、画像コンテンツを変更せずに領域の焦点を当てることができます。研究は、Alpha-CLIPのパフォーマンスを改善し、応用範囲を広げ、領域に焦点を当てたCLIPの特徴の新しい戦略を探索するための継続的な研究を提唱しています。

MITとETH Zurichの研究者たちが、動的なセパレータの選択を通じて、拡張された混合整数線形計画法(MILP)の解決を目的とした機械学習技術を開発しました

複雑な最適化問題に効率的に取り組むことは、グローバルパッケージルーティングから電力グリッド管理まで、持続的な課題です。伝統的な方法である混合整数線形計画(MILP)ソルバーは、複雑な問題を分解するための重要なツールとして使用されてきました。しかし、計算の集中度には課題があり、しばしば最適でない解決策や長時間の解決につながります。これらの制約に対応するため、MITとETHチューリッヒの研究者は、革新的なデータ駆動型機械学習技術を開発し、複雑な物流上の課題へのアプローチと解決方法を革新するという約束を果たしました。 最適化が重要な物流業界では、課題は困難です。サンタクロースが魔法のソリとトナカイを持っていたとしても、FedExのような企業は効率的に休暇のパッケージを配送する迷路と戦っています。企業が使用するソフトウェアの骨子であるMILPソルバーは、多大な最適化問題を分解するための分割統治アプローチを採用しています。しかし、これらの問題の複雑さは、解決にかかる時間が数時間、または数日に及ぶことがしばしばです。時間的な制約から、企業はソルバーの途中で解決を中断し、時間制約による最適でない解決策に妥協することがしばしばあります。 研究チームは、解決時間の長さに重要な中間ステップをMILPソルバーで特定しました。このステップはセパレータ管理と呼ばれるもので、すべてのソルバーの中核的な要素ですが、しばしば見過ごされがちです。セパレータ管理は、セパレータアルゴリズムの理想的な組み合わせを特定する負担の多い問題です。これに気付いた研究者たちは、MILPソルバーにデータ駆動型アプローチを取り込むことを目指しました。 既存のMILPソルバーは、一般的なアルゴリズムと技術を使用して広範な解の空間をナビゲートしています。しかし、MITとETHチューリッヒのチームは、セパレータ検索空間を合理化するためのフィルタリングメカニズムを導入しました。彼らは約20のオプションに抑え込まれた圧倒的な130,000の潜在的な組み合わせを減らしました。このフィルタリングメカニズムは、限界効果減少の原則に基づいており、最も利益が得られるのはごく少数のアルゴリズムであると主張しています。 この革新的な飛躍は、機械学習をMILPソルバーフレームワークに統合することにあります。研究者は、問題固有のデータセットでトレーニングされた機械学習モデルを使用して、狭められたオプションから最適なアルゴリズムの組み合わせを選択しました。事前定義された設定を持つ従来のソルバーとは異なり、このデータ駆動型アプローチにより、企業は自社のデータを活用して一般的なMILPソルバーを特定の問題に適合させることができます。たとえば、FedExのようにルーティング問題を定期的に解決する企業は、過去の経験から実際のデータを使用してソリューションを洗練させることができます。 機械学習モデルは、コンテキストベースのバンディット、リインフォースメントラーニングの形態で動作します。この反復学習プロセスでは、潜在的なソリューションを選択し、その効果についてフィードバックを受け取り、後続の反復で洗練されます。結果として、MILPソルバーの劇的な高速化が実現し、正確性が損なわれることなく、30%から驚異的な70%までの範囲で達成されます。 総括すると、MITとETHチューリッヒの共同研究は、最適化分野での重要なブレイクスルーを成し遂げました。古典的なMILPソルバーと機械学習を結びつけることにより、研究チームは複雑な物流上の課題に取り組むための新たな道を開拓しました。解決時間を短縮しつつ精度を維持する能力は、MILPソルバーに実用的な優位性をもたらし、実世界のシナリオにより適用されるようになります。この研究は最適化の領域に貢献し、複雑な実世界の問題の解決に機械学習の広範な統合の舞台を提供しています。

このGoogleとUC BerkeleyのAI論文は、NeRFillerを紹介します:2Dインペインティング拡散モデルを使用して3Dシーン再構築を革新する人工知能アプローチ

3Dキャプチャの欠けた部分を効果的に補完する方法はありますか?Google ResearchとUC Berkeleyの研究論文では、「NeRFiller」という新しい3Dインペインティング手法を紹介しています。この手法は、再構築の失敗や観測の不足によってしばしば欠落する、不完全な3Dシーンやオブジェクトの再構築の課題に対処しています。この手法は、参照例を通じてインペインティングプロセスを制御することで、精密かつカスタマイズ可能なシーンの補完を可能にします。NeRFillerは、3Dキャプチャ内のシーンやオブジェクトを強化する3D生成インペインティング手法であり、3D再構築の改善に効果的な解決策となります。 この研究では、伝統的な2Dインペインティングから大規模インペインティングのLaMaのような先進的な技術まで、さまざまな手法を用いて3Dシーンの欠落した部分を補完する方法を探求しています。確率的および潜在的な拡散モデルに取り組み、テキストや画像を入力とする3D生成アプローチを考慮しています。オブジェクトの削除設定の関連性が強調され、3Dインペインティングのためのさまざまなベースラインとデータセットが評価されています。ビデオやシーン編集の関連研究に触れながらも、主に既存の3Dシーンのコンテキスト内でのシーン補完に焦点を当てています。 この研究では、3Dシーンの補完とインペインティングの課題に取り組み、3Dに対応したマルチビュー一致アプローチの重要性を強調しています。シーン補完とオブジェクトの削除を区別し、3Dシーン内で新しいコンテンツを生成することに焦点を当てています。3D一貫性のあるイメージのための2D生成インペインティングモデルの制約について議論されています。提案されたNeRFillerアプローチは、テキストから画像への拡散モデルのグリッド事前現象を活用し、インペインティングでのマルチビュー一貫性を強化します。3Dシーンの最適化のための反復的な手法を利用し、グリッドインペインティングを大規模な画像コレクションに拡張しています。Masked NeRFやLaMaskなどのベースラインとの比較を行い、NeRFillerの効果を示しています。比較や新規ビューメトリクス、イメージ品質、ジオメトリメトリクスを含む評価も行われています。 NeRFillerは、3Dシーンの欠落した領域を補完するための生成的な2D拡散モデルを利用した手法です。さまざまなインペインティングの推定値の課題と、2Dモデルの3D一貫性の欠如に取り組んでいます。NeRFillerは、顕著なインペインティング結果のための統合機構を取り入れ、3Dキャラクターを促進します。反復的な3Dシーンの最適化を活用し、グリッドインペインティングを大規模な画像コレクションに拡張します。Masked NeRFやLaMaskといったベースラインとの比較を行い、NeRFillerの効果を示しています。比較や新規ビューメトリクス、イメージ品質、ジオメトリメトリクスを含む評価も行われています。 結論として、NeRFillerは3Dシーン内の欠落した部分を正確に補完することができる強力な3Dインペインティングツールです。ギャップを埋めたり、不要な要素を削除する能力は、オブジェクト削除のベースラインを上回ります。Joint Multi-View Inpaintingの導入により、複数の画像間でノイズの予測を平均化することで一貫性を強化しています。NeRFillerは、最新のベースラインと比較することで、ユーザー指定の3Dシーンの補完を達成しています。ユーザーが指定した仕様で3Dキャプチャの欠落部分をインペインティングするための貴重なフレームワークを提供しています。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us