Learn more about Search Results Claude - Page 11
- You may be interested
- 疾病の原因を特定するための遺伝子変異の...
- より良いOCRパフォーマンスを得るためのEa...
- プロンプトエンジニアリング:検索強化生...
- 「SQLをマスターするための無料の5冊の本」
- 「貪欲であることはどれほど悪いのか?」
- 予測モデルをテストする:バックテストガイド
- メタAIとケンブリッジ大学の研究者は、大...
- 「AIにおけるウォータージャグ問題とは何...
- 言語モデルによるレッドチーミング:言語...
- 遺伝的アルゴリズムを使用したPythonによ...
- ソフトウェア開発におけるAIの将来:トレ...
- 「メタがFacebookの衰退を収益化している...
- 「GenAIソリューションがビジネス自動化を...
- 「ローカルCPUで小規模言語モデルを実行す...
- 「アマゾン対Google対マイクロソフト:AI...
悪質なコンテンツ検出のためのLLM:利点と欠点
この投稿では、インターネット上の有害なコンテンツを特定するための2つの異なる方法を評価しますそれは、教師あり分類器のトレーニングと大規模な言語モデルの使用です
「Amazon SageMakerを使用したRLHFによるLLMsの改善」
このブログ投稿では、人気のあるオープンソースのRLHFリポTrlxを使用して、Amazon SageMaker上でRLHFを実行する方法を説明します私たちの実験を通じて、Anthropicが提供する公開可能なHelpfulness and Harmlessness(HH)データセットを使用して、大規模な言語モデルの役立ち度または無害性を向上させるためにRLHFを使用する方法を示しますこのデータセットを使用して、ml.p4d.24xlargeインスタンスで実行されているAmazon SageMaker Studioノートブックを使用して実験を行います最後に、私たちの実験を再現するためのJupyterノートブックを提供します
「6週間でCassandraにベクトル検索を追加するのにAIがどのように役立ったのか」
「DataStaxは、この基礎となるAI機能を追加するために迅速に動かなければなりませんでしたChatGPT、Copilot、および他のAIツールのおかげで、私たちはコードを構築することができました」
「GPT-4に対する無料の代替案トップ5」
GPT-4がすごいと思っている?これらの生成AIの新参者たちは既に注目を集めているよ!
「チャットモデル対決:GPT-4 vs. GPT-3.5 vs. LLaMA-2によるシミュレートされた討論会-パート1」
最近、MetaがGPT-4と競合するチャットモデルを開発する計画を発表し、AnthropicがClaude2を発売したことにより、どのモデルが最も優れているかについての議論がますます激化しています...
MAmmoTHとは、一般的な数学問題解決に特化したオープンソースの大規模言語モデル(LLM)シリーズです
現代の大規模言語モデル(LLM)は、数学的な推論に大きく依存しており、それがこの研究の主な焦点です。最近の進歩にもかかわらず、クローズドソースのモデル(GPT-4、PaLM-2、Claude 2など)は、GSM8KやMATHなどの人気のある数学的な推論のベンチマークを支配しており、オープンソースのモデル(Llama、Falcon、OPTなど)は遠く及ばない状況があります。 このギャップを埋めるためには、2つの主要なアプローチがあります: GalacticaやMINERVAなどの継続的な事前学習:この方法では、数学に関連するウェブデータの100Bトークン以上を用いてLLMをトレーニングしています。計算コストが高いですが、この方法によりモデルの科学的推論能力が一般的に向上します。 RFT(rejection sampling fine-tuning)やWizardMathなどのデータセットごとに特化したファインチューニング手法:これらの手法は、それぞれのドメイン内では効果的ですが、推論が必要な数学の他の領域には適用できません。 ウォータールー大学、オハイオ州立大学、HKUST、エディンバラ大学、IN.AIの最近の研究は、軽量かつ汎用性のある数学の指導調整技術を採用し、LLMの数学的推論能力を向上させる方法を模索しています(ファインチューニングタスクだけでなく一般的に)。 現在のアプローチは、Chain-of-Thought(CoT)の方法論に大いに依存しており、数学の問題を自然言語のステップで解決する方法を説明しています。しかし、この方法は計算精度や難しい数学的・アルゴリズム的推論手法には対応しきれません。PoTやPALのようなコードベースの手法では、数学問題の解決手順を効率化するためにサードパーティのリソースを使用します。 この方法では、計算量の多いタスク(例:sympyを使用した二次方程式の解法やnumpyを使用した行列の固有値の計算など)を別のPythonインタプリタに委任することが推奨されます。一方、PoTはより抽象的な推論シナリオ(常識的な推論、形式論理、抽象代数など)を扱う際にはいくつかの制限があります、特に事前存在しないAPIの場合には。 CoTとPoTの両方の利点を活かすために、研究チームは数学のための新しいハイブリッドな指導調整データセット「MathInstruct」を提案しています。その主な特徴は次のとおりです: さまざまな数学的領域と複雑度レベルの包括的なカバレッジ ハイブリッドなCoT&PoTの根拠 6つの新たに選択されたデータセットと7つの既存のデータセットがMathInstructの数学的な正当化の基盤を提供しています。モデリングの観点から、研究者たちは入出力形式とデータソースの変動の影響を調べるために、約50のユニークなモデルをトレーニングおよび評価しています。 結果として得られたモデルは数学的な一般化能力において非常に優れています。 研究者たちは、MAmmoTHをGSM8K、MATH、AQuA-RAT、NumGLUEなどの様々なデータセットに対してテストしました。これらのモデルは、オープンソースのLLMの数学的な推論の効率を大幅に向上させ、最新のアプローチよりもOOD(ドメイン外)データセットに対してより一般化された性能を示します。人気のあるコンペティションレベルのMATHデータセットでの7Bモデルの結果は、WizardMath(オープンソースのMATHの最先端技術)よりも3.5倍(35.2%対10.7%)優れており、34BのMAmmoTH-Coder(Code Llamaで調整)の結果はCoTを使用したGPT-4よりも優れています。MAmmoTHとMAmmoTH-Coderの両方のモデルは、以前のオープンソースモデルよりも大幅に精度が向上しています。
「ベイチュアン2に会おう:7Bおよび13Bのパラメータを持つ大規模な多言語言語モデルのシリーズ、2.6Tトークンでゼロからトレーニングされました」
大規模言語モデルは近年、大きな進展を遂げています。GPT3、PaLM、Switch Transformersなどの言語モデルは、以前のELMoやGPT-1のようなモデルの数百万から、数十億、あるいは数兆のパラメータを持つようになりました。人間に似た流暢さを持ち、様々な自然言語の活動を行う能力は、モデルのサイズの成長により大幅に向上しました。OpenAIのChatGPTのリリースにより、これらのモデルが人間の話し言葉に似たテキストを生成する能力が大いに注目されました。ChatGPTは、カジュアルな会話から難しいアイデアの明確化まで、さまざまな文脈で優れた言語スキルを持っています。 この革新は、自然言語の生成と理解を必要とするプロセスを自動化するために、巨大な言語モデルがどのように使用されるかを示しています。LLMの革新的な開発と使用が進んでいるにもかかわらず、GPT-4、PaLM-2、ClaudeなどのトップのLLMのほとんどはまだクローズドソースです。モデルのパラメータについて開発者や研究者が部分的なアクセスしか持てないため、このコミュニティがこれらのシステムを徹底的に分析や最適化することは困難です。LLMの透明性とオープンさがさらに向上することで、この急速に発展している分野での研究と責任ある進歩が加速される可能性があります。Metaが作成した巨大な言語モデルのコレクションであるLLaMAは、完全にオープンソースであることにより、LLMの研究コミュニティに大いに役立っています。 OPT、Bloom、MPT、Falconなどの他のオープンソースLLMとともに、LLaMAのオープンな設計により、研究者はモデルに自由にアクセスし、分析、テスト、将来の開発を行うことができます。このアクセシビリティとオープンさにより、LLaMAは他のプライベートLLMとは一線を画しています。Alpaca、Vicunaなどの新しいモデルは、オープンソースLLMの研究と開発のスピードアップによって可能になりました。しかし、英語はほとんどのオープンソースの大規模言語モデルの主な焦点となっています。たとえば、LLaMAの主なデータソースであるCommon Crawl1は、67%の事前学習データを含んでいますが、英語の資料しか含むことが許可されていません。MPTやFalconなど、異なる言語の能力に制約のあるフリーソースLLMも主に英語に焦点を当てています。 そのため、中国語などの特定の言語でのLLMの開発と使用は困難です。Baichuan Inc.の研究者は、この技術的な研究で、広範な多言語言語モデルのグループであるBaichuan 2を紹介しています。Baichuan 2には、13兆パラメータを持つBaichuan 2-13Bと7兆パラメータを持つBaichuan 2-7Bの2つの異なるモデルがあります。両モデルは、Baichuan 1よりも2.6兆トークン以上のデータを使用してテストされました。Baichuan 2は、大量のトレーニングデータにより、Baichuan 1を大幅に上回るパフォーマンスを発揮します。Baichuan 2-7Bは、MMLU、CMMLU、C-Evalなどの一般的なベンチマークで、Baichuan 1-7Bよりも約30%優れたパフォーマンスを示します。Baichuan 2は特に数学とコーディングの問題のパフォーマンスを向上させるように最適化されています。 Baichuan 2は、GSM8KとHumanEvalのテストでBaichuan 1の結果をほぼ2倍に向上させます。また、Baichuan 2は医療および法律の領域の仕事でも優れた成績を収めています。MedQAやJEC-QAなどのベンチマークで他のオープンソースモデルを上回り、ドメイン特化の最適化のための良い基礎モデルとなっています。彼らはまた、人間の指示に従う2つのチャットモデル、Baichuan 2-7B-ChatとBaichuan 2-13B-Chatを作成しました。これらのモデルは、対話や文脈を理解するのに優れています。彼らはBaichuan 2の安全性を向上させるための戦略についてさらに詳しく説明します。これらのモデルをオープンソース化することで、大規模言語モデルのセキュリティをさらに向上させながら、LLMの責任ある作成に関する研究を促進することができます。…
AWSにおける生成AIとマルチモーダルエージェント:金融市場における新たな価値を開拓するための鍵
マルチモーダルデータは、市場、経済、顧客、ニュースおよびソーシャルメディア、リスクデータを含む、金融業界の貴重な要素です金融機関はこのデータを生成し、収集し、利用して、金融業務の洞察を得たり、より良い意思決定を行ったり、パフォーマンスを向上させたりしますしかし、マルチモーダルデータには複雑さと不足に起因する課題があります
「LLMプロンプティングにおける思考の一端:構造化されたLLM推論の概要」
スマートフォンやスマートホームの時代に、単なる指示に従うだけでなく、私たちと同様に複雑な論理を扱い、実際に考えるAIを想像してみてくださいまるでSFのように聞こえますね…
「プロダクションでのあなたのLLMの最適化」
注意: このブログ投稿は、Transformersのドキュメンテーションページとしても利用可能です。 GPT3/4、Falcon、LLamaなどの大規模言語モデル(LLM)は、人間中心のタスクに取り組む能力を急速に向上させており、現代の知識ベース産業で不可欠なツールとして確立しています。しかし、これらのモデルを実世界のタスクに展開することは依然として課題が残っています: ほぼ人間のテキスト理解と生成能力を持つために、LLMは現在数十億のパラメータから構成される必要があります(Kaplanら、Weiら参照)。これにより、推論時のメモリ要件が増大します。 多くの実世界のタスクでは、LLMには豊富な文脈情報が必要です。これにより、推論中に非常に長い入力シーケンスを処理する能力が求められます。 これらの課題の核心は、特に広範な入力シーケンスを扱う場合に、LLMの計算およびメモリ能力を拡張することにあります。 このブログ投稿では、効率的なLLMの展開のために、現時点で最も効果的な技術について説明します: 低精度: 研究により、8ビットおよび4ビットの数値精度で動作することが、モデルのパフォーマンスに大幅な低下を伴わずに計算上の利点をもたらすことが示されています。 Flash Attention: Flash Attentionは、よりメモリ効率の高いアテンションアルゴリズムのバリエーションであり、最適化されたGPUメモリの利用により、高い効率を実現します。 アーキテクチャのイノベーション: LLMは常に同じ方法で展開されるため、つまり長い入力コンテキストを持つ自己回帰的なテキスト生成として、より効率的な推論を可能にする専用のモデルアーキテクチャが提案されています。モデルアーキテクチャの中で最も重要な進歩は、Alibi、Rotary embeddings、Multi-Query Attention(MQA)、Grouped-Query-Attention(GQA)です。 このノートブックでは、テンソルの視点から自己回帰的な生成の分析を提供し、低精度の採用の利点と欠点について包括的な探索を行い、最新のアテンションアルゴリズムの詳細な調査を行い、改良されたLLMアーキテクチャについて議論します。これを行う過程で、各機能の改善を示す実用的な例を実行します。 1. 低精度の活用 LLMのメモリ要件は、LLMを重み行列とベクトルのセット、およびテキスト入力をベクトルのシーケンスとして見ることで最も理解できます。以下では、重みの定義はすべてのモデルの重み行列とベクトルを意味するために使用されます。 この投稿の執筆時点では、LLMは少なくとも数十億のパラメータから構成されています。各パラメータは通常、float32、bfloat16、またはfloat16形式で保存される10進数の数値で構成されています。これにより、LLMをメモリにロードするためのメモリ要件を簡単に計算できます: X十億のパラメータを持つモデルの重みをロードするには、おおよそ4 *…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.