Learn more about Search Results 22 - Page 11

「この男性は誰でもバイラルにすることができます(10か月で21億回の視聴回数)」

「以下は、短編コンテンツで1か月で1億ビューを獲得するための6つのステップのフレームワークです...」

「Q*とLVM LLMのAGIの進化」

「Q*とLVMによるAIの未来を探求し、論理的な推論とビジョンAIのためのLLMを高度化させて、AGIへの道を開拓してください」

このAI論文は、高品質な3Dセグメンテーションを実現するために、与えられたシーン内の任意のオブジェクトのためのセグメントエニシングのための高品質(SANeRF-HQ)フレームワークを紹介しています

香港科技大学、卡内基梅隆大学和达特茅斯学院的研究人员开发了名为SANeRF-HQ(High-Quality的NeRF任意物体分割)的方法,以在复杂场景中实现准确的三维分割。以往基于NeRF的物体分割方法在准确性方面受到限制。而SANeRF-HQ结合了”Segment Anything Model”(SAM)和神经辐射场(NeRF)的功能,提高了分割准确性并在复杂环境中提供了高质量的三维分割。 NeRF在处理复杂场景时面临挑战。SANeRF-HQ通过使用SAM进行开放世界的物体分割,并由用户提示进行指导,以及使用NeRF进行信息聚合来克服这些挑战。它在物体定位的灵活性和视图间一致的分割方面胜过以往的NeRF方法。对NeRF数据集的定量评估凸显了它对三维计算机视觉和分割的潜在贡献。 NeRF在使用多层感知器进行新视图合成方面表现出色。虽然NeRF内的3D物体分割已经取得成功,但Semantic-NeRF和DFF等以前的方法依赖于受限的预训练模型。SAM允许多样的提示,并在分割方面擅长零样例泛化。SANeRF-HQ利用SAM进行开放世界分割和NeRF进行信息聚合,解决了复杂场景中的挑战,并在质量上超越以往的NeRF分割方法。 SANeRF-HQ使用特征容器、蒙版解码器和蒙版聚合器来实现高质量的三维分割。它对SAM特征进行编码,生成中间蒙版,并使用NeRF的颜色和密度场将2D蒙版整合到3D空间中。该系统结合了SAM和NeRF进行开放世界分割和信息聚合。它可以使用NeRF生成的视频和SAM的自动分割功能来执行基于文本和自动的三维分割。 SANeRF-HQ在高质量的三维物体分割方面胜过以往的NeRF方法。它提供了在物体定位和视图间一致的分割方面的灵活性增强。对多个NeRF数据集的定量评估证实了其有效性。SANeRF-HQ展示了在动态NeRF中的潜力,实现了基于文本提示的分割,并能够进行自动的三维分割。使用密度场、RGB相似度和光线对RGB损失可以提高分割的准确性,填补内部和边界的缺失部分,从而获得视觉上改进且更加稳固的分割结果。 总之,SANeRF-HQ是一种高级的三维分割技术,超越了以往的NeRF方法,具有在多个视图上的灵活性和一致性。它在各种NeRF数据集上的优越表现表明,它具有在三维计算机视觉和分割技术方面做出重要贡献的潜力。将其扩展到4D动态NeRF物体分割以及使用密度场、RGB相似度和光线对RGB损失进一步增强了其准确性和质量,融合了颜色和空间信息。 未来的研究可以探索SANeRF-HQ在4D动态NeRF物体分割方面的潜力。它可以通过在复杂和开放世界场景中的应用中进行研究,并与语义分割和场景分解等先进技术相结合,以增强其功能。对SANeRF-HQ在真实世界场景中可用性和有效性进行用户研究可以提供有价值的反馈。进一步探索其在大规模场景和数据集上的可扩展性和效率,以优化实际应用的性能是必要的。

なぜAIチップの将来がニューロモーフィックコンピューティングにおいて重要なのか?

神経形態計算はAIとIoTを変革する可能性がありますより正確で多様性に富み、信頼性の高いアクセスしやすいAIの波を引き起こす可能性がありますが、依然として課題が残っています

グラフ、分析、そして生成AI グラフニュースレターの年

グラフ、分析、および生成AIグラフとAIが結びつくさまざまな方法と、業界と研究のニュースについての説明

データのセキュリティとコラボレーションの強化:AWS Clean Roomsが機械学習と差分プライバシー機能を導入

Amazon Web Services(AWS)は、セキュアなデータ共有サービスであるClean Roomsの新しいアップデートを発表しました。このアップデートにより、最新の機械学習(ML)と差分プライバシー機能を組み込むことで、企業はセキュリティを強化し、機械学習モデルの活用とデータのプライバシー保護を両立させながら正確なデータ分析を推進することができます。 最新のClean Roomsでは、データプライバシーを強化しセキュアな共同作業を促進するさまざまな機能が追加されました。機械学習のサポートを組み込むことにより、オリジナルデータを公開することなくMLモデルを活用することができます。この革新的な機能により、機密情報を明かすことなく共同データ分析を行うことが可能となり、データプライバシーを重視する企業にとって大きな利点となります。 差分プライバシー機能もClean Roomsに統合されることで、データクエリの結果に適切にキャリブレートされたエラー(「ノイズ」とも呼ばれる)を組み込むことができます。これにより、個々のデータ貢献を曖昧化しながら分析の正確性を確保することができます。プライバシーバジェットコンポーネントを使用してプライバシーを有限のリソースとして取り扱うことにより、この機能はデータ漏洩を防ぎ、プライバシーリソースの枯渇や潜在的な侵害の回避に寄与します。 差分プライバシーは、特定の個人情報を漏洩することなく統計的パターンを明らかにする技術であり、AWS Clean Roomsはこの技術の適用を簡略化します。ユーザーは差分プライバシー機能を有効にし、共同作業の設定内でプライバシーポリシーを設定することで、このプライバシー強化技術を簡単に使用することができます。 今回のアップデートにおける画期的な機能であるClean Rooms MLにより、ユーザーは機械学習モデルを活用しながら機密データを保護することができます。この機能はさまざまな産業に適用され、ターゲットマーケティングの効果の高化、潜在的な顧客の特定、臨床研究の迅速化などを行う際に重要な情報を保護しながら支援します。 Clean Rooms MLの導入により、ユーザーはAWSによって管理されたモデルを組織内のデータ共有のコラボレーションにおいて訓練する必要がなくなります。このML機能のシームレスな統合により、ユーザーはモデルの予測を柔軟に制御し、分析において適応性と精度を確保することができます。 さらに、Clean Roomsではプライバシーコントロール機能も導入されており、適切な権限を持つClean Roomsメンバーが実行するクエリや出力を管理する権限を使用者に与えることができます。この追加のセキュリティレイヤーにより、コラボレーションエコシステム内のデータセキュリティとプライバシーの措置がさらに強化されます。 要するに、刷新されたAWS Clean Roomsは、セキュアなデータコラボレーションにおけるパラダイムシフトを象徴し、包括的なデータ分析の可能性を引き出しつつ、重要な情報の保護を重視しています。最新の機械学習と差分プライバシーの機能を組み合わせることで、AWSはデータセキュリティを確保しつつ分析の効率を高める道を開拓し、より安全で洞察に満ちた共同作業の未来を切り拓いています。 この記事の投稿は、Enhancing…

データサイエンスへのゲートの解除:GATE 2024 in DS&AIの究極の学習ガイド

イントロダクション Graduate Aptitude Test in Engineering(GATE)は、インドで行われる大学院入学試験です。この試験は主に、工学と科学の学部の内容を総合的に理解できるかをテストします。もし、IIScバンガロールが導入するGATE 2024のデータサイエンスとAIに向けて準備をしているのであれば、正しい場所にいます。この記事は、あなたがこの新しくてエキサイティングなGATEペーパーを進む際の指針となるであろう、学習教材、講義ノート、標準的な参考書などをまとめた宝庫です。 準備の基盤となる主要な科目には、確率と統計、線形代数、機械学習、AIなどがあります。これらはただの科目ではありません。これらこそがデータサイエンスとAIの基盤です。私が紹介する情報源は、IIScバンガロールの名声高い教授陣によってテストされ、推奨されたものです。 確率と統計:チャンスとデータのゲーム 確率と統計においては、挑戦されることを予想しなければなりません。この科目は、CSEのカリキュラムに比べて非常に重要な位置を占めており、追加のトピックが多く含まれています。この難関を乗り越えるためには、正しい参考書を手にする必要があります。私はまず、“A First Course in Probability”(シェルドン・ロス著)から始めることをおすすめします。これは学部レベルでも定番です。これに慣れたら、同じ著者による“Introduction to Probability Models”に進んでください。 より高度な知識を求める方には、“Introduction to Probability Theory”(S.C. PortおよびC.J. Stone著)、さらにその後に続く“Introduction to…

ランナーの疲労検知のための時間系列分類 – チュートリアル

ウェアラブルセンサーを使用して収集されたランニングデータは、ランナーのパフォーマンスや全体的なテクニックについての洞察を提供することができますこれらのセンサーから得られるデータは通常、時間の経過によって変化するものです

「FacebookとInstagramにて、Metaが新しいAI機能を発表」

人工知能において注目すべき進展が詰まった2022年において、Metaは革新的な進歩を遂げ、確実にリードを取っています。仮想アシスタントの向上からコンテンツ作成の革命まで、このテックジャイアントは2023年においてAIの風景を形作る準備が整っています。Facebook、Instagram、WhatsApp、Messengerを通じて、20の新たな方法でGenerative AIがエクスペリエンスを向上させることができます。本記事では、メッセージングアプリ、画像生成、コンテンツの発見、プライバシー対策にわたるAIエクスペリエンスの最新情報について深く掘り下げます。 META AIの進化 META AI、仮想アシスタントは今ではより直感的であり、モバイル上で詳細な回答と正確な検索結果の要約を提供します。ユーザーはWhatsAppを含むメッセージングプラットフォームでAIチャットを開始したり、Ray-Ban Metaスマートグラスを使用して音声コマンドを使用することで、シームレスにMETA AIと対話することができます。さらに、META AIはチャットに限らず、FacebookやInstagramのプロダクト体験の豊かさに貢献しています。投稿へのコメントの提案から商品のコピーの向上まで、META AIはインタラクションをより魅力的にするために重要な役割を果たしています。 友達と一緒に画像を作成し、Riffしよう META AIのテキストから画像への機能には「再構築」というエキサイティングな追加があります。この新機能により、ユーザーはMessengerやInstagramのグループチャット内で協力して画像を作成し、修正することができます。ユーザーは初期の画像を生成し、友人はテキストプロンプトを提案することで、まったく新しい画像を作成することができます。この協力的でエンターテイニングな機能により、画像の作成と共有に新たな次元が加わります。 リールで新しいエクスペリエンスを見つけよう METAは、リールをMETA AIのチャットに導入し、ユーザーにコンテンツの探索、クリエイターとのつながり、インスピレーションの見つけ方を提供します。旅行の計画を立てたり、グループチャットで興味を話し合ったりする際に、リクエストしてリールを見て提案を視覚化することができます。この統合は、スイート内のアプリでよりつながりのあるパーソナライズされたエクスペリエンスを作成するというコミットメントを示しています。 Facebookでのエクスペリエンスを向上させる META AIの影響力はFacebookにも及び、革新的な機能がテストされています。パーソナライズされたバースデーグリーティングの作成やFeed投稿の編集、新しいチャットのトピックの提案など、日常のエクスペリエンスを簡素化するための取り組みです。さらにAIは、Marketplaceにおいて検索能力を向上させ、ユーザーが製品に関する関連情報をより簡単に見つけ、代替案を見つけることができるようにします。 クリエイターがファンに返信するのを助ける Instagramのクリエイターは、META AIがダイレクトメッセージ内での推奨返信を導入することで喜びに包まれます。この機能は、コミュニケーションを効率化し、クリエイターがより効果的に観客と交流することを可能にします。AIはトーンやコンテンツを分析し、関連する返信を生成することで、クリエイターとファンの間の迅速かつアクセスしやすいインタラクションを促進します。 META AIでImagineを体験する…

「ビジュアルAIがカナダ最大かつ最も賑やかな空港で飛躍する」

カナダのオンタリオ州にあるトロントピアソン国際空港は、年間約5000万人の旅客にサービスを提供する国内最大かつ最も混雑した空港です。 旅行者の体験を向上させるために、同空港は2022年6月にZensors AIプラットフォームを導入しました。このプラットフォームは、既存のセキュリティカメラの匿名映像を使用して空間データを生成し、リアルタイムで運用を最適化するのに役立ちます。 NVIDIA MetropolisのビジョンAIパートナーエコシステムの一員であるZensorsは、トロントピアソンの運用チームが通関待ち時間を大幅に短縮しました。2022年のピーク時に到着手続きにかかる平均時間は30分程度と推定されていたものが、昨年の夏にはわずか6分未満に減少しました。 同社の共同創業者であるAnuraag Jain氏は、「Zensorsは視覚AIを誰でも簡単に使用できるようにしています。」と述べています。 Jain氏はさらに、大規模なAIのスケーリングはほとんどの組織にとって容易ではないと付け加え、空港は従来のハードウェアセンサーやLiDAR、3Dステレオカメラに基づく効果の薄い解決策に頼るか、改装や新しいターミナルの建設によって運用を改善することを考えることが多いと述べています。これらの方法は数十億ドルのプロジェクトになり得ます。 Jain氏は、「当社は、既存のカメラと最新のAI技術を使用して、空港がソフトウェア企業のように考えることができるプラットフォームを提供しています。それにより、より迅速でコスト効果の高い、さらに正確なソリューションを展開することが可能になります。」と述べています。 空港運用の高速化 トロントピアソンでは、ターミナルのインフラをアップグレードするか新たに建設する通常の数か月または数年かかる作業ではなく、数週間で運用を改善する方法が必要でした。 Zensors AIプラットフォームは、空港の既存のカメラシステムからの映像フィードを構造化データに変換します。 匿名化された映像を使用して、プラットフォームは待ち列の旅行者数をカウントし、混雑したエリアを特定し、パッセンジャーの待ち時間を予測するなどのタスクを実行し、リアルタイムでスタッフに通知して運用を迅速化します。 このプラットフォームはまた、運用チームがパフォーマンスを評価し、より効果的に計画し、最適な効率性のためにスタッフを再配置するための分析レポートも提供します。 Zensors AIによるリアルタイムの待ち時間統計データは、トロントピアソンのオンラインダッシュボードおよびターミナル内の電子ディスプレイに公開されます。これにより、旅客は関税手続きやセキュリティ手続きにかかる時間について正確な情報に簡単にアクセスできます。また、全体的な顧客満足度を向上させ、接続便に乗ることができるかどうかについての潜在的な不安を軽減します。 トロントピアソンの運営会社であるGreater Toronto Airport Authorityの空港IT計画開発ディレクターであるZeljko Cakic氏は、「Zensorsプラットフォームから得られる分析は非常に正確であることがわかっています。全体的な顧客体験を向上させ、待ち時間を短縮することを目指しており、Zensorsプラットフォームを通じて収集されるデータはこの結果を推進する意思決定のための主要な要素の一つです。」と述べています。 NVIDIAによる高精度AI Zensors…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us