Learn more about Search Results 21 - Page 11

Amazon AlexaのAI研究者がQUADRoを発表:QAシステムの向上に向けた画期的なリソースで、440,000以上のアノテーション付きの例があります

人工知能(AI)と機械学習(ML)の能力は、あらゆる可能な産業に進出することを成功裏に可能にしました。最近では、大規模言語モデル(LLM)と質問応答システムの導入により、AIコミュニティは大きな進歩を遂げています。事前計算されたデータベースから効率的に応答を取得することは、自動質問応答(QA)システムの開発における一般的なステップです。 主なQAパラダイムには、オープンブック型とクローズドブック型の2つがあります。オープンブック型、またはリトリーブアンドリード型は、適切な素材を大量の文書コーパス、頻繁にインターネットから取得する2つの手順を経て、異なるモデルや手法を適用して取得された素材から解決策を取り出す手法です。一方、クローズドブック型は最近の手法であり、外部のコーパスを利用せずにT5などのSeq2Seqモデルを基にしたモデルを訓練することで、結果を生成します。 クローズドブック技術は優れた結果を示しているものの、多くの産業アプリケーションに対してリソースが過剰であり、システムのパフォーマンスに重大なリスクをもたらす可能性があります。質問応答型データベース(DBQA)は、パラメータや大規模なコーパスの情報に頼るのではなく、事前生成された質問応答のデータベースから応答を取得する方法です。 これらのシステムの主要な部分は、質問と回答のデータベース、データベースのクエリに対する検索モデル、および最適な回答を選ぶランキングモデルです。DBQA技術により、迅速な推論と再学習モデルなしで新しいペアを追加できる能力が可能となり、新しい情報を導入することができます。 DBQA技術の課題の一つは、検索およびランキングモデルの開発における充分なトレーニングデータの不足です。既存のリソースはスコープと内容の面で不足しており、注釈プロセスの品質を向上させる必要があるものや、質問と質問の類似性に焦点を当て、回答を無視するものが多数存在しています。 これらの課題に対処するため、研究者チームは質問応答データベースの検索に関するデータセットとモデルであるQUADRoを提案しました。これは訓練と評価のために特別に作成された新しいオープンドメインの注釈リソースです。リポジトリの15,211の入力質問には、各質問に関連する30の質問応答ペアがあります。このコレクションには合計で443,000の注釈付きサンプルが含まれています。入力クエリに対する各ペアの重要性を示すバイナリインジケータがラベル付けされています。 研究チームはまた、このリソースの品質と特性をいくつかの重要なQAシステムコンポーネントに関して評価するための徹底した実験も行いました。これらの要素には、トレーニング方法、入力モデルの構成、および回答の関連性が含まれます。実験は、このデータセットで訓練されたモデルの挙動とパフォーマンスを検討することで、関連する応答を取り出すために提案された方法がどれだけうまく機能するかを示しました。 まとめると、この研究は、自動品質保証システムにおけるトレーニングとテストデータの不足を解決するために、有用なリソースを導入し、リソースの属性を慎重に評価することで、包括的な理解を支援しています。トレーニング戦略と回答の関連性のような重要な要素に重点を置くことで、評価が補完されます。

シミュレーション最適化:友人の会社のサポートデスクをモデル化し最適化の手助けをする

それは比較的シンプルな依頼から始まりました私の友人は、サポートセンターの運営を手伝っており、いくつかの困難を抱えていました支援デスクのエージェントはいつでも効率的でないようで…

エンドツーエンドの労働力管理を取得する: Amazon ForecastおよびAWS Step Functions

この記事は、Nafi Ahmet Turgut、Mehmet İkbal Özmen、Hasan Burak Yel、Fatma Nur Dumlupınar Keşir、Mutlu PolatcanおよびGetirのEmre Uzel共著によるゲスト投稿ですGetirは、超高速の食品宅配の先駆けですこのテクノロジー企業は、最後の一マイル配送を飛躍的に改革し、数分で食品を届ける提案をしましたGetirは2015年に設立され、運営しています...

「Pythonで脂肪尾を数値化する4つの方法」

「これはパワーロウとファットテールに関するシリーズの三番目の記事です前回の記事では、実証データからパワーロウを検出する方法について探求しましたこの技術は便利ですが、ファットテールはさらなる調査が必要です...」

ボット、詐欺ファームがウェブトラフィックの73%を担当

「アーコーズ・ラボによると、2023年第3四半期においてボットによる悪意のある攻撃と人間による詐欺の集団がウェブとアプリのトラフィックの73%を占めていることが報告されました」

「ノーコードアプリビルダーのトップ10(2023年12月)」

テクノロジーの絶えず進化する風景の中で、ノーコードアプリビルダーの台頭は、アプリ開発の民主化の証ですかつてはベテランプログラマーやソフトウェア開発者の領域にのみデジタルソリューションを作成する時代が終わりましたノーコードプラットフォームは、起業家やビジネスプロフェッショナル、クリエイティブな思考を持つ人々に扉を開いています[…]

マイクロソフトと清華大学の研究者は、「SCA(Segment and Caption Anything)を提案し、SAMモデルに地域キャプションの生成能力を効率的に装備する」と述べています

コンピュータビジョンと自然言語処理の交差点では、画像内のエンティティの領域キャプションの生成の課題に常に取り組んできました。この課題は、トレーニングデータにセマンティックラベルが存在しないことにより、特に複雑です。研究者は、このギャップに効率的に対処する方法を追求し、モデルが多様なイメージ要素を理解し、説明するための方法を見つけることを目指しています。 Segment Anything Model(SAM)は、強力なクラス非依存セグメンテーションモデルとして登場し、さまざまなエンティティをセグメント化する驚異的な能力を示しています。ただし、SAMは領域キャプションを生成する必要があり、その潜在的な応用範囲が制限されます。そのため、マイクロソフトと清華大学の研究チームは、SAMの能力を効果的に活用するためにSCA(Segment and Caption Anything)という解決策を提案しました。SCAは、SAMの重要な拡張と見なすことができます。それは効率的に領域キャプションを生成する能力をSAMに与えるように設計されています。 ブロックの構築に類似して、SAMはセグメンテーションのための堅牢な基盤を提供し、SCAはこの基盤に重要なレイヤーを追加します。この追加機能は、軽量のクエリベースのフィーチャーミキサーの形で提供されます。従来のミキサーとは異なり、このコンポーネントはSAMと因果言語モデルを結びつけて、領域固有の特徴を言語モデルの埋め込み空間と整合させます。この整合は、後続のキャプション生成に重要であり、SAMの視覚的理解と言語モデルの言語的能力との相乗効果を生み出します。 SCAのアーキテクチャは、画像エンコーダ、フィーチャーミキサー、マスクまたはテキストのためのデコーダヘッドの3つの主要なコンポーネントの熟慮された組み合わせです。モデルの要となるフィーチャーミキサーは、軽量な双方向トランスフォーマーです。これはSAMと言語モデルを結びつける結合組織として機能し、領域固有の特徴を言語の埋め込みと最適化する役割を果たします。 SCAの主な強みの一つは、効率性です。数千万個のトレーニング可能なパラメータを持つ、トレーニングプロセスがより高速かつスケーラブルになります。この効率性は、SAMのトークンをそのまま保持しながら、追加のフィーチャーミキサーにのみ焦点を当てた戦略的な最適化から生じます。 研究チームは、領域キャプションデータの不足を克服するために、弱い監督による事前トレーニング戦略を採用しています。このアプローチでは、モデルは物体検出とセグメンテーションタスクで事前トレーニングされ、完全な文章の説明ではなくカテゴリ名を含むデータセットを活用します。このような弱い監督による事前トレーニングは、限られた領域キャプションデータを超えて視覚的概念の一般的な知識を転送するための実用的な解決策です。 SCAの有効性を検証するためには、比較分析、さまざまなビジョンラージランゲージモデル(VLLM)の評価、およびさまざまな画像エンコーダのテストが行われています。モデルはリファリング式生成(REG)タスクで強力なゼロショットパフォーマンスを示し、その適応性と汎化能力を示しています。 まとめると、SCAはSAMの堅牢なセグメンテーション能力をシームレスに拡張する有望な進歩です。軽量なフィーチャーミキサーの戦略的な追加とトレーニングの効率性とスケーラビリティにより、SCAはコンピュータビジョンと自然言語処理の持続的な課題に対する注目すべき解決策となります。

グラフ、分析、そして生成AI グラフニュースレターの年

グラフ、分析、および生成AIグラフとAIが結びつくさまざまな方法と、業界と研究のニュースについての説明

「大規模言語モデルの微調整方法:ステップバイステップガイド」

2023年、アルパカ、ファルコン、ラマ2、およびGPT-4のような大規模言語モデル(LLM)の台頭は、人工知能の民主化の傾向を示しています

DL Notes 高度な勾配降下法

以前の記事では、勾配降下法について基本的な概念とその種類の最適化における主な課題を要約しましたしかし、スティーブンスティカスティック勾配法のみを取り上げました...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us