Learn more about Search Results 17 - Page 11

「世界は誰も知らない60年前のコードに依存している」

COBOLは、使用されている主要なメインフレームのプログラミング言語の一つですが、ほとんどの学校や大学では数十年間COBOLの授業を行っていません

「イギリス、ロシアが数年にわたり議員やその他の人々に対するサイバー攻撃を行っていたと発表」

「ロシアの情報機関につながるグループが、イギリスの政治システムへの信頼を損なうために持続的な活動を行っていたと政府は述べました」

「オンライン大規模な推薦のためのデュアル拡張二つのタワーモデル」

推薦システムは、ユーザーに個別にカスタマイズされた提案を提供するために設計されたアルゴリズムですこれらのシステムは、ユーザーが関連するアイテムを発見するのを助けるため、さまざまなドメインで使用されています

『TiDE:トランスフォーマーよりも打ちのめす「恥ずかしく」シンプルなMLP』

産業が進化し続ける中で、正確な予測の重要性は、電子商取引、医療、小売り、農業など、どの業界で働くにしても譲れない財産として存在します...重要性は...

ヘルスケアの革新:医学における大規模言語モデルの影響と将来の探求

「GoogleのMed-PaLM 2やEPFLのMeditronなどの大規模言語モデルの変革的な影響を探求し、それらの応用、課題、患者ケアと臨床効率向上の潜在能力について検討する」

「Power BI ビジュアライゼーションの究極ガイド」

イントロダクション Power BIは、データサイエンスの中でも強力なツールとして浮上しており、データに基づく洞察に根ざした情報を提供することで、企業が情報に基づいた意思決定を行うことを可能にしています。Microsoftによって開発されたPower BIビジュアライゼーションは、ユーザーがデータを視覚的に表現し、洞察を組織全体に円滑に伝達することを可能にします。また、広範なデータソースとの接続を確立しながら、アプリケーションやウェブサイトにシームレスに埋め込む能力も注目されています。 間違いなく、データサイエンスの分野で最も重要な要素の一つは、データの可視化の実践です。これは、視覚的要素(チャート、グラフ、マップなど)を用いて情報やデータをグラフィカルに説明することを意味します。これらの視覚ツールを活用することで、データの可視化はデータをより理解しやすくし、傾向や外れ値、パターンを判断しやすくします。要するに、Power BIは生データを視覚的に一貫性のある語りに変換する能力を持つ、典型的なツールであり、複雑なデータセットの普遍的な理解を向上させます。 Power BIビジュアライゼーションの理解 Power BIビジュアライゼーションは、Power BIを使用してデータをグラフィカルに表現するプロセスです。これにより、複雑なデータセットをより直感的で視覚的な形式で理解することができます。Power BIビジュアライゼーションは重要であり、テキストベースのデータでは明らかではない複雑な概念を理解したり、新しいパターンを識別したりすることができます。 Power BIビジュアライゼーションのメリットは多岐に渡ります。データと対話することができ、詳細な情報を得るためにチャートやグラフを掘り下げたり、他の人とレポートを作成して共有したりすることができます。また、ユーザーはユニークな360度のビジネスビューを持つパーソナライズされたダッシュボードを作成することも可能です。 Power BIビジュアライゼーションの種類 Power BIは、データを異なる方法で表現するための幅広いビジュアライゼーションを提供しています。 A. チャート チャートは、Power BIでのデータのグラフィカル表現です。これを使用して、複雑なデータセットを簡素化し、データを理解しやすく解釈できるようにします。Power BIはさまざまなチャートの種類を提供しており、それぞれ異なる種類のデータやデータの可視化タスクに適しています。 1.…

「Neosyncをご紹介します:開発環境やテストにおいて、製造データを同期化し、匿名化するためのオープンソースソリューション」

ソフトウェア開発では、テストと開発の目的で機密性の高い本番データを扱う際に、チームはしばしば課題に直面します。データのプライバシーとセキュリティをバランスする必要性と、強力なテストの必要性の両立は難しいものです。既存の解決策には、データの匿名化や合成データの作成に手作業が必要な場合もありますが、これらのプロセスをより便利かつ効率的にする必要があるかもしれません。 この問題に取り組む一つの一般的な手法は、テストのためにデータを手動で匿名化または生成することです。しかし、これは時間がかかり、エラーを起こしやすく、潜在的なセキュリティリスクを引き起こす可能性があります。技術の進歩に伴い、Neosyncと呼ばれる新しいオープンソースのソリューションが現れました。このソリューションは、このプロセスを簡略化し、合理化するために登場しました。 Neosyncは、本番データベースのスナップショットにシームレスに接続することで、チームが本番スキーマに基づいた合成データを生成したり、既存の本番データを匿名化したりすることを可能にするプラットフォームです。この匿名化されたまたは合成データは、ローカル開発、ステージング、および継続的な統合テストを含むさまざまな環境で同期できます。 Neosyncの主な特徴は、自動的に合成データを生成し、機密情報を匿名化し、特定のテストニーズに対応するために本番データベースのサブセットを作成する能力です。このプラットフォームはGitOpsベースのアプローチを採用しており、既存の開発者ワークフローにスムーズに適合します。Neosyncはまた、テスト中に発生する可能性のある外部キーの破損に関する懸念を解決するためにデータの整合性を確保します。 Neosyncの特筆すべき側面の一つは、ジョブの再試行、失敗、再生を処理する包括的な非同期パイプラインです。これにより、開発者にとって頑強かつ信頼性の高いテスト環境が確保されます。このプラットフォームは、事前に構築されたトランスフォーマーを使用してさまざまなデータ型をサポートし、特定の要件に応じてカスタムトランスフォーマーを定義することも可能です。 Neosyncは、どのワークフローにもシームレスに統合される世界クラスの開発者体験を提供することで、その機能を実証しています。PostgresやMySQLなどの複数のデータベースシステム、およびS3などのストレージソリューションのサポートにより、その汎用性が向上しています。KubernetesやDockerなどのツールを使用することで、効率的でスケーラブルな開発環境が提供されます。 まとめると、Neosyncは、効率的なテストとデータプライバシーのバランスを求める開発者にとって貴重なソリューションです。オープンソースの性質により、チームは最も機密性の高いデータを自身のインフラストラクチャ内に保持することができ、安全で信頼性の高いテスト環境を促進します。自動データ生成、匿名化、およびさまざまなデータベースのサポートなどの機能により、Neosyncは現代の開発者のベストプラクティスにぴったりと合致し、より優れた、より強靭なアプリケーションの構築に貢献しています。

シミュレーション最適化:友人の会社のサポートデスクをモデル化し最適化の手助けをする

それは比較的シンプルな依頼から始まりました私の友人は、サポートセンターの運営を手伝っており、いくつかの困難を抱えていました支援デスクのエージェントはいつでも効率的でないようで…

「Pythonで脂肪尾を数値化する4つの方法」

「これはパワーロウとファットテールに関するシリーズの三番目の記事です前回の記事では、実証データからパワーロウを検出する方法について探求しましたこの技術は便利ですが、ファットテールはさらなる調査が必要です...」

マルチモーダルAIがデジタルのつながりを作り出す

「複数の要素とデータストリームを組み合わせることにより、マルチモーダルAIはよりスマートで人間らしいシステムの可能性を提供します」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us